Embedded Target for the
TI TMS320C2000™ DSP

Platform

For Use with Real-Time Workshop®

Modeling

Implementation

User’s Guide = ‘\The MathWorks

Version 2

X Ly

How to Contact The MathWorks:

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www . mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for the TI TMS320C2000™ DSP Platform User’s Guide
© COPYRIGHT 2003-2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

November 2003 Online only
June 2003 Online only
October 2004 Online only
December 2004 Online only
March 2005 Online only
September 2005 Online only
March 2006 Online only

New for Version 1.0 (Release 13SP1+)
New for Version 1.1 (Release 14)

Revised for Version 1.1.1 (Release 14SP1)
Revised for Version 1.2 (Release 14SP1+)
Revised for Version 1.2.1 (Release 14SP2)
Revised for Version 1.3 (Release 14SP3)
Revised for Version 2.0 (Release 2006a)

Getting Started

1

Setting Up and Configuring

Data Type Support

Scheduling and Timing

Overview of Creating Models for Targeting
OnlineHelp it
Blocks to Avoid Using in Your Models
S-Function Builder Blocks
Setting Simulation Configuration Parameters
Building Your Model

Using the c2000lib Blockset

What Is the Embedded Target for the TI TMS320C2000
DSP Platform?
Suitable Applications

Platform Requirements — Hardware and Operating

System e e e
Supported Hardware for Targets
Software Requirements
Verifying the Configuration

Embedded Target for TI C2000 and Code Composer
Studio ... e e
Default Project Configuration

Timer-Based Interrupt Processing
Asynchronous Interrupt Processing

Hardware Setup
Starting the ¢2000lib Library
Setting Upthe Model
Adding Blocks tothe Model

1-2
1-2

1-3

1-3
1-3

1-7

vi

Generating Code from the Model 1-31
Creating Code Composer Studio Projects Without
Loading i i 1-32

Using the IQmath Library

2|

About the IQmath Library 2-2
Common Characteristicsc i, 2-2
Fixed-Point Numbers 2-4
Signed Fixed-Point Numbers 2-4
Q Format Notationc0 ..., 2-5
BuildingModels i .. 2-9
Converting DataTypesc.coiiiiiiiiiinno... 2-9
Using Sources and Sinks ..., 2-9
Choosing Blocks to Optimize Code 2-9

Blocks — By Category

3

C2000 Target Preferences Library (c2000tgtpreflib) ... 3-2
Host-side CAN Blocks (c2000canlib) 3-3
C2000 RTDX Instrumentation Library (rtdxBlocks) ... 3-4
C2400 DSP Chip Support Library (c2400dspchiplib) .. 3-5
C280x DSP Chip Support Library (c280xdspchiplib) .. 3-6
C281x DSP Chip Support Library (c281xdspchiplib) .. 3-7

Contents

C28x Digital Motor Control Library (c28xdmeclib) 3-9

C28x IQmath Library (tiigmathlib) 3-10

Blocks — Alphabetical List

4

Index

vii

viii Contents

Getting Started

This chapter describes how to use the Embedded Target for TI C2000™ DSP
to create and execute applications on Texas Instruments C2000 development
boards. To use the targeting software, you should be familiar with using
Simulink® to create models and with the basic concepts of Real-Time
Workshop® automatic code generation. To read more about Real-Time
Workshop, refer to the Real-Time Workshop documentation.

What Is the Embedded Target for
the TI TMS320C2000 DSP Platform?
(p. 1-2)

Setting Up and Configuring (p. 1-3)

Embedded Target for TI C2000 and
Code Composer Studio (p. 1-9)

Data Type Support (p. 1-10)

Scheduling and Timing (p. 1-11)

Overview of Creating Models for
Targeting (p. 1-15)

Using the ¢2000lib Blockset (p. 1-20)

Introduces the Embedded Target for
TI C2000 DSP and describes some of
its features and supported hardware

Describes the software and hardware
required to use the Embedded Target
for the TT TMS320C2000 DSP
Platform and how to set them up

Provides information about Code
Composer Studio™

Compares the data types supported
by Simulink and the TI C2000 DSP
chips

Provides information about TI C2000
scheduling

Summarizes the steps required to
create models for your target

Provides an example of creating a
model and targeting hardware

1 Getting Started

What Is the Embedded Target for the T TMS320C2000
DSP Platform?

The Embedded Target for the TI TMS320C2000™ DSP Platform integrates
Simulink® and MATLAB® with Texas Instruments eXpressDSP™ tools. You
can use this product to develop and validate digital signal processing and
control designs from concept through code.

The Embedded Target for the TI TMS320C2000 DSP Platform uses C code
generated by Real-Time Workshop® and your TI development tools to generate
a C language real-time implementation of your Simulink model. Real-Time
Workshop builds a Code Composer Studio™ project from the C code.

You can compile, link, download, and execute the generated code on an
LF2407, F2808, or F2812 eZdsp™ DSP board from Spectrum Digital, Inc. or
on a custom board based on a TT C280x or C281x chip.

Suitable Applications
The Embedded Target for the TI TMS320C2000 DSP Platform enables you to

develop digital signal processing and control applications. Some important
characteristics of the applications that you can develop are

® Asynchronous scheduling

® Flash-based standalone applications

* Fixed-point arithmetic

® Single rate

® Multirate

® Adaptive

e Frame based

1-2

Setting Up and Configuring

Setting Up and Configuring

Platform Requirements — Hardware and Operating
System

To run the Embedded Target for the TI TMS320C2000 DSP Platform, your
host PC must meet the following hardware configuration requirements:

Intel Pentium or Intel Pentium processor-compatible PC
64 MB RAM (128 MB recommended)

20 MB hard disk space available after installing MATLAB
Color monitor

One parallel printer port or one USB port to connect your target board
to your PC

CD-ROM drive
Windows 2000 or Windows XP

You may need additional hardware, such as signal sources and generators,
oscilloscopes or signal display systems, and assorted cables to test and
evaluate your application on your hardware.

Supported Hardware for Targets
The Embedded Target for TT C2000 DSP supports the following boards:

e DSP Starter Kits (DSKs) from Spectrum Digital, Inc.

= TMS320F2812 eZdsp DSK — the F2812eZdsp DSP Starter Kit
= TMS320F2808 eZdsp DSK — the F2808eZdsp DSP Starter Kit
= TMS320LF2407 eZdsp DSK — the LF2407eZdsp DSP Starter Kit

The above DSKs help developers evaluate digital signal processing
applications for the Texas Instruments DSP chips. You can create, test, and
deploy your processing software and algorithms on the target processor
without the difficulties inherent in starting with the digital signal processor
itself and building the support hardware to test the application on the

1-3

1 Getting Started

14

processor. Instead, the development board provides the input hardware,
output hardware, timing circuitry, memory, and power for the digital signal
processor. Texas Instruments provides the software tools, such as the C
compiler, linker, assembler, and integrated development environment, for
PC users to develop, download, and test their algorithms and applications
on the processor.

Refer to the documentation provided with your hardware for information
on setting up and testing your target board.

Note To generate code, and download the code to your target board, you
do not need to change any jumpers from their factory defaults on either
the LF2407 or F2812 target board.

However, if you want to run your code from flash memory on the F2808 or
F2812, you do need to change settings on the board. For more information
on this, see “Running Code from Flash Memory” on page 1-5.

Note In factory default condition, both the LF2407 and F2812 target
boards are set to operate in microcontroller mode. The Embedded Target for
the TI TMS320C2000 DSP Platform does not support microprocessor mode.

Custom boards based on any of the following Texas Instruments C2000
Digital Signal Controllers:

= TMS320F2801
= TMS320F2806
= TMS320F2808
= TMS320C2810
= TMS320F2810
= TMS320C2811
= TMS320F2811
= TMS320R2811

Setting Up and Configuring

= TMS320C2812
= TMS320F2812
= TMS320R2812

Running Code from Flash Memory

Running code from flash memory is supported on both the F2808 and F2812
eZdsp DSKs. Although you can generate and download code to the F2808 or
F2812 eZdsp DSK with the board in factory default condition, you need to
change hardware settings on the board before you can run code from flash
memory.

For the F2812, you need to change the jumper settings from their
factory defaults. For more information on this, see the discussion
of the jumper settings for Boot Mode in the eZdsp™ F2812
Technical Reference, available from the Spectrum Digital Web site at
http://c2000.spectrumdigital.com/ezf2812/.

For the F2808, you need to change DIP switch settings. For
more information on this, see the eZdsp™ F2808 USB Technical
Reference, available from the Spectrum Digital Web site at
http://c2000.spectrumdigital.com/ezf2808/.

Software Requirements

MathWorks Software

For information about other MathWorks software required to use the
Embedded Target for the TT TMS320C2000 DSP Platform, refer to the
MathWorks Web site — http://www.mathworks.com. Check the Products
area for the Embedded Target for the TT TMS320C2000 DSP Platform.

For information about the software required to use the Link for Code

Composer Studio Development Tools, refer to the Products area of the
MathWorks Web site — http://www.mathworks.com.

1-5

http://c2000.spectrumdigital.com/ezf2812/
http://c2000.spectrumdigital.com/ezf2808/
http://www.mathworks.com
http://www.mathworks.com

1 Getting Started

1-6

Texas Instruments Software

In addition to the required software from The MathWorks, Embedded Target
for the TT TMS320C2000 DSP Platform requires that you install the Texas
Instruments development tools and software listed in the following table.
Installing Code Composer Studio IDE Version 3.1 for the C2000 series installs

the software shown.

Required Tl Software for Targeting Your Tl C2000 Hardware

Installed

Product Additional Information

Assembler Creates object code (.obj) for C2000 boards from
assembly code

Compiler Compiles C code from the blocks in Simulink models
into object code (.obj). As a by-product of the
compilation process, you get assembly code (.asm) as
well.

Linker Combines various input files, such as object files and

libraries

Code Composer
Studio

Texas Instruments integrated development
environment (IDE) that provides code debugging and
development tools

TI C2000
miscellaneous
utilities

Various tools for developing applications for the C2000
digital signal processor family

Code Composer
Setup Utility

Program you use to configure your CCS installation by
selecting your target boards or simulator

Flash Plug-In

Plug-in you use in downloading generated code to flash
memory. While this plug-in is not strictly required, it
is very useful when working with flash memory. It is
available through the CCS Web Update.

Setting Up and Configuring

Verifying the Configuration

To determine whether the Embedded Target for the TI TMS320C2000 DSP
Platform is installed on your system, enter this command at the MATLAB
prompt:

c20001ib

MATLAB displays the C2000 block library containing the following libraries
and blocks that comprise the C2000 library:

® (2800 RTDX Instrumentation

® (2000 Target Preferences

® Host-side CAN Blocks

® (C281x DSP Chip Support

e (C280x DSP Chip Support

e (2400 DSP Chip Support

* (C28x IQMath Library

® (C28x DMC Library

® Info block

® Demos block

If you do not see the listed libraries, or MATLAB does not recognize the
command, you need to install the Embedded Target for the TI TMS320C2000

DSP Platform. Without the software, you cannot use Simulink and Real-Time
Workshop to develop applications targeted to the TI boards.

Note For information about system requirements, refer to the system
requirements page, available in the Products area at the MathWorks Web
site (http://www.mathworks.com).

To verify that Code Composer Studio (CCS) is installed on your machine,
enter this command at the MATLAB prompt:

http://www.mathworks.com

1 Getting Started

1-8

ccsboardinfo

With CCS installed and configured, MATLAB returns information about
the boards that CCS recognizes on your machine, in a form similar to the
following listing:

Board Board Proc Processor Processor
Num Name Num Name Type

1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For the
Embedded Target for the TI TMS320C2000 DSP Platform to operate with
CCS, the CCS IDE must be able to run on its own.

Note For any model to work in the targeting environment, you must select
the discrete-time solver in the Solver pane of the Simulink Configuration
Parameters dialog box. Targeting does not work with continuous-time solvers.

To select the discrete-time solver, from the main menu in your model window,
select Simulation > Configuration Parameters. Then in the Solver pane,
set the Solver option to discrete (no continuous states).

Embedded Target for TI C2000 and Code Composer Studio

Embedded Target for Tl C2000 and Code Composer Studio

Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE). Used in combination with your Embedded Target for TI C2000 DSP
and Real-Time Workshop, CCS provides an integrated environment that,
once installed, requires no coding.

Executing code generated from Real-Time Workshop on a particular target
requires that Real-Time Workshop generate target code that is tailored to the
specific hardware target. Target-specific code includes I/O device drivers and
interrupt service routines (ISRs). Generated source code must be compiled
and linked using CCS so that it can be loaded and executed on a TI DSP. To
help you to build an executable, the Embedded Target for TI C2000 DSP
uses the Link for Code Composer Studio to start the code building process
within CCS. After you download your executable to your target and run it,
the code runs wholly on the target. You can access the running process only
from the CCS debugging tools or across a link using Link for Code Composer
Studio Development Tools.

Default Project Configuration

CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation. The
models you build with the Embedded Target for TI C2000 DSP use a custom
configuration that provides a third combination of build and optimization
settings — custom_MW.

Default Build Options in the custom_MW Configuration
The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options. custom_MW uses
Function(-02) for the compiler optimization level.

Your CCS documentation provides complete details on the compiler build

options. You can change the individual settings or the build configuration
within CCS.

1-9

1 Getting Started

Data Type Support

The TI C2000 DSP chips support 16-bit data types and do not have native
8-bit data types. Simulink and the Embedded Target for TI C2000 support
many data types, including 8-bit data types.

If you select int8 or uint8 in your model, your simulation will run with 8-bit
data, but in the generated code, that data will be represented as 16-bit. This
may cause instances where data overflow and wraparound occurs in the
simulation, but not in the generated code.

For example, if you want the overflow behavior of the simulation and

generated code to match for a Simulink Add block in your model, select
Saturate on integer overflow in that block.

1-10

Scheduling and Timing

Scheduling and Timing

Normally the code generated by the Embedded Target for TI C2000 runs out
of the context of a timer interrupt. Model blocks run in a periodical fashion
clocked by the periodical interrupt whose period is tied to the base sample
time of the model.

This execution scheduling model, however, is not flexible enough for many
systems, especially control and communication systems, which must respond
to external events in real time. Such systems require the ability to handle
various hardware interrupts in an asynchronous fashion.

For C280x and C281x-based boards, Embedded Target for TI C2000 lets you
model systems that include asynchronous hardware interrupt processing in
addition to the tasks that are left to be handled in the context of the timer
interrupt.

Timer-Based Interrupt Processing

For code that runs in the context of the timer interrupt, each iteration of the
model solver is run after an interrupt has been posted and serviced by an
interrupt service routine (ISR). The code generated for the C280x or C281x
uses CPU_timer0. The code generated for the C24x uses an Event Manager
(EV) timer, which you can select.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set
up to ensure the desired rate as follows:

Timer Period
[iTimer Clock Speea'}]

TimerClockPrescaler

Base Rate Sample Time =

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812 and F2808 or 2'¢-1 for the LF2407), the CPU clock speed
and, for the LF2407, the TimerClockPrescaler setting in the appropriate
Target Preferences block. The CPU clock speed for the LF2407 is 40 MHz, for
the F2808 it is 100 MHz, and for the F2812 it is 150 MHz.

1-11

1 Getting Started

Maximum Sample Times

C24x C280x C281x
Maximum Maximum Maximum
TimerClockPrescaler | Sample Sample Sample
Setting Time(s) Time(s) Time(s)
1 0.0016 42.94 28.63
2 0.0032 N/A N/A
4 0.0065 N/A N/A
8 0.0131 N/A N/A
16 0.0262 N/A N/A
32 0.0524 N/A N/A
64 0.1048 N/A N/A
128 0.2097 N/A N/A

If all the blocks in the model inherit their sample time value, and no sample
time is explicitly defined, Simulink assigns a default of 0.2 s.

High-Speed Peripheral Clock

The event managers and their general-purpose timers, which drive PWM
waveform generation use the high-speed peripheral clock (HISCLK). By
default, this clock is always selected in the Embedded Target for TI C2000.
This clock is derived from the system clock (SYSCLKOUT):

HISCLK = SYSCLKOUT / (high-speed peripheral prescaler)
The high-speed peripheral prescaler is determined by the HSPCLK bits
set in SysCtrl. The default value of HSPCLK is 1, which corresponds to a
high-speed peripheral prescaler value of 2.

For example, on the F2812, the HISCLK rate becomes

HISCLK = 150 MHz / 2 = 75 MHz

1-12

Scheduling and Timing

Asynchronous Interrupt Processing

Simulink and Real-Time Workshop facilitate the modeling and generation
of code for asynchronous event handling, including servicing of
hardware-generated interrupts, by using the following special blocks:

e Hardware Interrupt block

This block enables selected hardware interrupts, generates the
corresponding interrupt service routines (ISRs), and connecst them to the
corresponding interrupt service vector table entries. When you connect
the output of the Hardware Interrupt block to the control input of a
triggered subsystem (for example, a function-call subsystem), the generated
subsystem code is called from the ISRs.

Embedded Target for TI C2000 provides a Hardware Interrupt block for
each of the supported processor families: C280x Hardware Interrupt and
C281x Hardware Interrupt.

e Rate Transition blocks

These blocks support data transfers between blocks running with different
priorities. The built-in Simulink Rate Transition blocks can be used for
this purpose.

The following diagram illustrates a use case where a hardware interrupt
triggers a task that also runs periodically in the context of the timer
interrupt. The Hardware Interrupt block installs an ISR for a given hardware
interrupt and relates the ISR to the appropriate function calls that trigger
further processing. The subsystem contains the blocks that are executed
asynchronously, only within the context of the hardware interrupt.

The periodic tasks, represented in the bottom half of the diagram, are clocked
by a dedicated timer. The blocks are executed from within the context of

a corresponding ISR, which is generated by default. The timer period is

tied to the model base rate. Rate Transition blocks are used to connect the
block labelled Processing 2, which is triggered both synchronously and
asynchronously, to the model.

1-13

1 Getting Started

Hard function E CAMN P ing 1 :E
ardware 4] L e || Processing i

Interrupt RCY

"""""" supsystern

QEF Processing 2 Py
e =t

If there were no interaction between the synchronous and asynchronous parts
of the model, the Rate Transition blocks would not be necessary.

For more information, see the section on Asynchronous Support in the
Real-Time Workshop documentation.

1-14

Overview of Creating Models for Targeting

Overview of Creating Models for Targeting

After you have installed the supported development board, start MATLAB. At
the MATLAB command prompt, type

c20001ib

This opens the c20001ib Simulink blockset that includes libraries containing
blocks predefined for C2000 input and output devices. As needed, add the
blocks to your model. See “Using the ¢2000lib Blockset” on page 1-20 for an
example of how to use this library.

Create your real-time model for your application the same way you create any
other Simulink model — by using standard blocks and C-MEX S-functions.
Select blocks to build your model from the following sources:

® Appropriate Target Preferences library block, to set preferences for your
target and application

* From the appropriate libraries in the c20001ib block library, to handle
input and output functions for your target hardware

* From Real-Time Workshop
e From Simulink Fixed Point
e Discrete time blocks from Simulink

* From any other blockset that meets your needs and operates in the discrete
time domain

Online Help

To get general help for using the Embedded Target for the TI TMS320C2000
DSP Platform, use the help feature in MATLAB. At the command prompt, type

help tic2000

to list the functions and block libraries included in the Embedded Target for
the TI TMS320C2000 DSP Platform. Or select Help > Full Product Family
Help from the menu bar in the MATLAB desktop. When you see the Table of
Contents in Help, select Embedded Target for the TI C2000 DSP.

1-15

1 Getting Started

Blocks to Avoid Using in Your Models

Many blocks in the blocksets communicate with your MATLAB workspace.
These blocks also generate code, but they do not work on the target as they do
on your desktop — in general, they slow your signal processing application
without adding instrumentation value.

For this reason, The MathWorks recommends that you avoid using certain
blocks, such as the Scope block and some source and sink blocks, in Simulink
models that you use on Embedded Target for TI C2000 DSP targets. The next
table presents the blocks you should not use in your target models.

Library Category Block Name
Simulink Commonly Used Scope
Sinks To File

To Workspace

Sources From File

From Workspace

Signal Processing Platform-Specific I/O From Wave Device

Blockset From Wave File

To Wave Device

To Wave File

Signal Operations Triggered Signal From
Workspace

Signal Processing Sinks | Signal To Workspace

Spectrum Scope

Triggered to Workspace

Signal Processing Signal From Workspace
Sources

1-16

Overview of Creating Models for Targeting

S-Function Builder Blocks

Simulink S-Function Builder can be used to create and add new blocks to
your model. When you generate code for your model, related source code files
are added to your Code Composer Studio project.

Setting Simulation Configuration Parameters

When you drag a Target Preferences block into your model, you are given
the option to set basic simulation parameters automatically. (Note that this
option does not appear if the Configuration Parameters dialog box is open
when you drag the Target Preferences block into the model.)

To refine the automatic settings, or set the simulation parameters manually,
open your model and select Simulation > Configuration Parameters.

If you are setting your simulation parameters manually, you must make at
least the following two settings:

* You must specify discrete time by selecting Fixed-step and discrete (no
continuous states) in the Solver pane of the Configuration Parameters
dialog box.

* You must also specify the appropriate version of the system target file and
template makefile in the Real-Time Workshop pane. For the Embedded
Target for the TI TMS320C2000 DSP Platform, specify one of the following
system target files, or click Browse and select from the list of targets.

ti C2000_grt.tlc
ti C2000_ert.tlc

The associated template filename is automatically filled in.

System Target Types and Memory Management

There are two system target types that apply to the Embedded Target for the
TI TMS320C2000 DSP Platform. These correspond to the two system target
files mentioned above.

A Generic Real-Time (GRT) target (such as ti_C2000 grt.tlc) is the target

configuration that generates model code for a real-time system as if the
resulting code was going to be executed on your workstation.

1-17

1 Getting Started

An Embedded Real-Time (ERT) target (such as ti C2000_ert.tlc) is
the target configuration that generates model code for execution on an
independent embedded real-time system. This option requires Real-Time
Workshop Embedded Coder.

The ERT target for the Embedded Target for the TI TMS320C2000 DSP
Platform offers memory management features that give you a way manage
the performance of your code while working with limited memory resources.

For more information on this, see the chapter on Memory Sections in the
Real-Time Workshop Embedded Coder User’s Guide.

Building Your Model

With this configuration, you can generate a real-time executable and download
it to your TI development board by clicking Build on the Real-Time
Workshop pane. Real-Time Workshop automatically generates C code and
inserts the I/O device drivers as specified by the hardware blocks in your
block diagram, if any. These device drivers are inserted in the generated C
code as inlined S-functions. For information about inlining S-functions, refer
to your target language compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

Note To build, load, and run code successfully on your target board, MATLAB
must be able to locate that board in your system configuration. Make

sure that the Board Name in your Code Composer Studio setup and the
DSPBoardLabel in the Target Preferences block in your model match.

During the same build operation, block parameter dialog box entries are
combined into a project file for CCS for your TI C2000 board. If you selected
the Build and execute build action in the Target Preferences block, your
makefile invokes the TI cross-compiler to build an executable file that

is automatically downloaded via the parallel port to your target. After
downloading the executable file to the target, the build process runs the file
on the board’s DSP.

1-18

Overview of Creating Models for Targeting

Note After using the runtime Build option to generate and build code
for your application, you must perform the following reset sequence before
you can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812 eZdsp and F2808 eZdsp Reset Sequence

1 Reset the board CPU.
2 Load your code onto the target.

3 Run your code on the target.

LF2407 eZdsp Reset Sequence

1 Load your code onto the target.
2 Reset the board CPU.

3 Run your code on the target.

1-19

1 Getting Started

1-20

Using the ¢2000lib Blockset

This section uses an example to demonstrate how to create a Simulink model
that uses the Embedded Target for TT C2000 DSP blocks to target your board.
The example creates a model that performs PWM duty cycle control via pulse
width change. It uses the C2812 ADC block to sample an analog voltage and
the C2812 PWM block to generate a pulse waveform. The analog voltage
controls the duty cycle of the PWM and you can observe the duty cycle change
on the oscilloscope. This model is also provided in the Demos library. Note
that the model in the Demos library also includes a model simulation.

Hardware Setup

The following hardware is needed for this example:
® Spectrum Digital eZdsp F2812

® Function generator

® Oscilloscope and probes
To connect the hardware:

1 Connect the function generator output to the ADC input ADCINAO on
the eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of
the oscilloscope.

3 Connect VREFLO to AGND on the eZdsp F2812. See the section
on the Analog Interface in Chapter 2 of the eZdsp™ F2812
Technical Reference, available from the Spectrum Digital Web site at
http://c2000.spectrumdigital.com/ezf2812/

Starting the c2000lib Library
At the MATLAB prompt, type

c20001ib

to open the c20001ib library blockset, which contains libraries of blocks
designed for targeting your board.

http://c2000.spectrumdigital.com/ezf2812/

Using the ¢2000lib Blockset

[Library: czooolib =10l x|

File Edit Wiew Format Help

General Chip Support Optimized Libraries
C2800 RTDX C2s1x D5P C2ax [Gmath
Instrumentation Chip Suppert Library
C2o00 Target Cagox D3P Cagx DM
Preferences Chip Suppert Library
Heat-zidle C2400 DEP
CAN Blocks Chip Support

Block Libraries for
Embedded Target for Texas Instruments{tmy)
TMS320C2000 DSP Platform
Copyright 2003-2006 The MathWorks, Inc.

The libraries are in three groups, plus Info and Demos blocks.

General

e (2800 RTDX Instrumentation (rtdxBlocks) — Blocks for adding RTDX
communications channels to Simulink models. See the tutorial in the
Link for Code Composer Studio Development Tools documentation for an
example of using these blocks.

e (2000 Target Preferences (c2000tgtpreflib) — Blocks to specify target
preferences and options. You do not connect this block to any other block in
your model.

¢ Host-side CAN Blocks (c2000canlib) — Blocks to configure CAN message
blocks and Vector CAN driver blocks

1-21

1 Getting Started

1-22

Chip Support
e (C281x DSP Chip Support (c281xdspchiplib) — Blocks to configure the
codec on the F2812 eZdsp DSK or on C281x-based custom boards

e (C280x DSP Chip Support (c280xdspchiplib) — Blocks to configure the
codec on the F2808 eZdsp DSK or on C280x-based custom boards

e (2400 DSP Chip Support (c2400dspchiplib) — Blocks to configure the
codec on the LF2407 eZdsp DSK or on the LF2407 DSP

Optimized Libraries
o (C28x IQmath Library (tiigmathlib) — Fixed-point math blocks for use
with C28x targets

e (C28x DMC Library (c28xdmclib) — Fixed-point math blocks for digital
motor control with C28x DSPs

Other Blocks

¢ Info block — Online help

¢ Demos block — Demos window
For more information on the blocks in each library, refer to their reference
pages.

Setting Up the Model

Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1 In the Library: ¢2000lib window, select File > New > Model to create a
new Simulink model.

2 In the Library: ¢2000lib window, double-click the C2000 Target Preferences
library block.

3 From the Target Preferences Library window, drag the F2812 eZdsp block
into your new model.

Using the ¢2000lib Blockset

F22812 eldszp

The following query asks if you want preferences to be set automatically.

<} Initialize

& Target Preference block for Embedded Target for Tl C2000 has been added
to the model. Do you want to initialize the configuration parameters

pertinent to this target to their default settings?

=101 x|

4 Click Yes to allow automatic setup. The following settings are
made, referenced in the table below by their locations in the
Simulation > Configuration Parameters dialog box:

Pane Field Setting

Solver Stop time inf

Solver Type Fixed-step

Data Save to workspace - Time | Off (cleared)
Import/Export

Data Save to workspace - Off (cleared)
Import/Export Output

Hardware Device type TI C2000
Implementation

Real-Time Target configuration - ti_c2000_grt.tlc
Workshop System target file

Real-Time Target configuration - ti_c2000_grt.tmf
Workshop Template makefile

1-23

1 Getting Started

Note Generated code does not honor Simulink stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in
generated code, you must put a Stop Simulation block in your model.

Note One Target Preferences block must be in each target model at the
top level. It does not connect to any other blocks, but stands alone to set
the target preferences for the model.

5 From your model’s main menu, select Simulation > Configuration
Parameters to verify and set the simulation parameters for this model.
Parameters you set in this dialog box belong to the model you are building.
They are saved with the model and stored in the model file. Refer to your
Simulink documentation for information on the Configuration Parameters
dialog box.

6 Use the Real-Time Workshop pane to set options for the real-time model.
Refer to your Real-Time Workshop documentation for detailed information
on the Real-Time Workshop pane options.

1-24

Using the ¢2000lib Blockset

E! Configuration Parameters: untitled/ Configuration il
Select: — Target selection
- Solver System target file: Iti_cZDDD_ert.tIc Browse... |
- O ata Irport /B wport
- Optimization Languags: jc =l
[EJ- Diagnostics Description: Embedded Target for TI C2000 DSF [ERT)
- Sample Time
- [1ata Y alidity — Documentation
- Type Conversion I~ Generate HTML report
- Connectivit .
Eompatihilitﬁ I™ | Launch report automatically
- W odel Referencing I™ Include hyperinks to model
- Hardware |mplermentation
- Model Referencing —Build process
2k Tim TLC options:l
- Commerts W akefil Fiaurati
- Symbols akefile configuration
-+ Cugtom Code [V Generate makefile
- Debug Make command: Imake_rtw
- |nterface
. Templates Termplate maksfile: |ti_c2DDD_ert.tmf
- Data Placement
- Data Type Replace...
— Custom storage class

- bdemorny Sections
I~ lgnore custom storage classes

[T Generate code only Build |

Ok I Cancel | Help | Apply |

¢ System target file. Clicking Browse opens the System target file
browser where you select ti_c2000 grt.tlc or ti_c2000 ert.tlc.
When you select your target configuration, Real-Time Workshop
chooses the appropriate system target file, template makefile, and make
command. You can also enter the target configuration filename, and
Real-Time Workshop will fill in the Template makefile and Make
command selections.

® Make command. When you generate code from your digital signal
processing application, use the standard command make rtw. Enter
make_rtw for the Make command.

¢ Template makefile. When you select the System target file,
Real-Time Workshop automatically selects the appropriate template
makefile: ti c2000 _grt.tmf or ti c2000 ert.tmf.

1-25

1 Getting Started

* Generate code only. This option does not apply to targeting with
the Embedded Target for TI C2000 DSP. To generate source code
without building and executing the code on your target, open the Target
Preferences block in your model and select Generate code only as the
BuildAction (BuildOptions > RunTimeOptions > BuildAction).

For all other Real-Time Workshop options, leave the default values for
this example.

7 Set the Target Preferences by double-clicking the F2812 eZdsp block and
adjust these parameters. For descriptions of these fields, see the F2812
eZdsp reference page.

Build Options

Subfield Field Setting

Compiler Options | CompilerVerbosity Verbose
KeepASMFiles False
OptimizationLevel Function(-02)

SymbolicDebugging | Yes

Linker Options CreateMAPFile True
KeepOBdJFiles True
LinkerCMDFile Full memory map

RunTime Options | BuildAction Build and execute
OverrunAction Continue

1-26

Using the ¢2000lib Blockset

CCSLink Options

Field Setting
CCSHandleName CCS_0Obj
ExportCCSHandle True

CodeGeneration Options

Subfield Field Setting
Scheduler Algorithm Preemptive priority based
Timer CPU_timero0
DSPBoard Options
Subfield Field Setting
DSP Board Label DSPBoardLabel F2812 PP Emulator
(see Note below)
DSP Chip DSPChipLabel TI TMS320C2812
eCAN BaudRatePrescaler | 10
EnhancedCANMode | True
SAM Sample_one_time
SBJ Only falling_ edges
SJW 2
SelfTestMode False
TSEG1 8
TSEG2 6

1-27

1 Getting Started

Note If the board label in your Code Composer Studio setup differs from
the default DSP Board Label shown in the Target Preferences block, you
can change the default setting. This would ensure that whenever you drag
a Target Preferences block into a new model, the DSP Board Label of your
model will match the label in your Code Composer Studio setup.

Open the C2000 Target Preferences library. Double-click the appropriate
Target Preferences block. Click DSP Board and change the text in the
DSP Board Label right column to the desired string. Click OK to close the
Target Preferences block and then close the library to save your change.

Adding Blocks to the Model

1 Double-click the C281x DSP Chip Support Library to open it.

1-28

Using the ¢2000lib Blockset

E!Library: c281xdspchiplib 101 =l
File Edit Wiew Format Help
C281x DSP Chip Suppert Library
Litilities
Erorn fuks mony To hi=rmony
Read From Wierony Wirte To ermony
Scheduling
C281x GEETx
IR)
EY Timer Ham™ware |ntemipt Idle Task
Tirmer Hamwsame Intempt Idle Task
Control
=24 P et=lh b GRS et=lh b
A cnt
ADG P QEF CAF
ADG P QEP AP
Communications
C2E1x C281x GEETx C281x
373 T 373 T
SPI Ry SPI AT Sl RoW SG|EMT
5P| Receive 5Pl TRnsmit S35 Rece e SG| TRnsmit
CzEix CzEix R TEETx
=g
=g
GPIC DI GPIO DO eCAN RCY SCAN XMT
Digital Input Digital Qutput eCAN Receive eCAN Transmit

2 Drag the C281x ADC block into your model. Double-click the ADC block
in the model and set Sample time to 64/80000. Use the default values
for all other fields. Refer to the C281x ADC reference page for information
on these fields.

3 Drag the C281x PWM block into your model. Double-click the PWM block
in the model and set the following parameters. Refer to the C281x PWM
reference page for information on these fields.

1-29

1 Getting Started

Pane Field Parameter
Timer Module A
Waveform Specify via dialog
period source
Waveform Clock cycles
period units
Waveform 64000
period
Waveform type | Asymmetric
Outputs Enable Selected
PWM1/PWM2
Duty cycle Input port
source
Logic PWMI1 control Active high
logic
PWM2 control Active low
logic
Deadband Use Selected
deadband for
PWM1/PWM2
Deadband 16
prescaler
Deadband 12
period
ADC Control ADC start event | Period interrupt

4 Type Simulink at the MATLAB command line to open the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click the Gain block in the model and set the following
parameters in the Function Block Parameters dialog box. Click OK.

1-30

Using the ¢2000lib Blockset

Pane Field Parameter

Main Gain 30
Multiplication Element-wise (K. *u)
Sample time -1

Signal Data Types Output data type Specify via dialog
mode
Output data type uint(16)
Round integer Floor

calculations toward

Parameter Data

Types

Parameter data type | Same as input

mode

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block as shown:

CE81x =24 b

ﬂlﬂﬁ

ADS Giain Pl
ADC Pt

F2812 eZd=p

Generating Code from the Model

This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
the Real-Time Workshop documentation.

You start the automatic code generation process from the Simulink model
window by clicking Build in the Real-Time Workshop pane of the
Configuration Parameters dialog. Other ways of starting the code generation
process are by clicking the Build all button on the toolbar of your model, or by
pressing the keyboard shortcut, Ctrl+B, while your model is open and in focus.

The code building process consists of these steps:

1 Real-Time Workshop invokes the function make_rtw to start the Real-Time
Workshop build procedure for a block diagram. make rtw invokes the

1-31

1 Getting Started

1-32

Target Language Compiler to generate the code and then invokes the
language-specific make procedure.

2 gmake builds file modelname.out. Depending on the build options you select
in the Simulation Parameters dialog box, gmake can initiate the sequence
that downloads and executes the model on your TI target board.

Creating Code Composer Studio Projects Without
Loading
To create projects in CCS without loading files to your target:

1 In the Real-Time Workshop pane in the Simulation Parameters dialog
box, select ti c2000.tl1lc as the system target file.

2 Select Create_CCS_Project for the BuildAction in the Target Preferences
block. Note that the Build and Build_and_execute options create CCS
projects as well.

3 Set the other Target Preferences options, including those for CCSLink. On
the Real-Time Workshop pane of the Simulation Parameters dialog box,
click Build to build your new CCS project.

Real-Time Workshop and the Embedded Target for TI C2000 DSP generate
all the files for your project in CCS and create a new project in the IDE.
Your new project is named for the model you built.

In CCS you see your project with the files in place in the directory tree.

Using the IQmath Library

About the IQmath Library (p. 2-2)
Fixed-Point Numbers (p. 2-4)

Building Models (p. 2-9)

Introduces the IQmath Library

Representation of fixed-point
numbers in the IQmath Library

Issues to consider when you build
models with the IQmath Library

2 Using the IQmath Library

About the IQmath Library

2-2

The IQmath Library provides blocks that perform processor-optimized,
fixed-point mathematical operations. The blocks in the C28x IQmath Library
correspond to functions in the Texas Instruments C28x IQmath Library
assembly-code library, which target the TT C28x family of digital signal
processors.

Note The implementation of this library for the TI C28x processor produces
the same simulation and code-generation output as the TI version of this
library, but it does not use a global Q value, as does the TI version. The Q
format is dynamically adjusted based on the Q format of the input data.

The IQmath Library blocks generally input and output fixed-point data types
and use numbers in Q format. The C28x IQmath Library block reference
pages discuss the data types accepted and produced by each block in the
library. For more information on fixed-point numbers and Q format, see

¢ “Fixed-Point Numbers” on page 2-4. In addition, see the Simulink Fixed
Point documentation, which includes more information on fixed-point data
types and scaling and precision issues.

® “Q Format Notation” on page 2-5

You can use these blocks with some core Simulink blocks and Simulink
Fixed Point blocks to run simulations in Simulink models before generating
code. Once you develop your model, you can invoke Real-Time Workshop to
generate equivalent code that is optimized to run on a TI C28x DSP. During
code generation, a call is made to the IQmath Library for each IQmath
Library block in your model to create target-optimized code. To learn more
about creating models that include both IQmath Library blocks and blocks
from other blocksets, refer to “Building Models” on page 2-9.

Common Characteristics
The following characteristics are common to all IQmath Library blocks:

e Sample times are inherited from driving blocks.

About the IQmath Library

® Blocks are single rate.
® Parameters are not tunable.
e All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, see
“C28x IQmath Library (tiigmathlib)” on page 3-10 for links to the individual

block reference pages.

2-3

2 Using the IQmath Library

2-4

Fixed-Point Numbers

In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below:

| bws—l | bws—ﬂ | | ‘55| ‘54- bﬂ | ‘E'E | ‘51 | bl:l |
st 4 IS8
Binary paint
where

® b, is the ith binary digit.

we 1s the word size in bits.

b1 is the location of the most significant (highest) bit (MSB).

b is the location of the least significant (lowest) bit (LSB).

® The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of 4.

Signed Fixed-Point Numbers

Signed binary fixed-point numbers are typically represented in one of three
ways:

® Sign/magnitude

® One’s complement

Fixed-Point Numbers

* Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a 1. For example, the two’s complement of 000101 is 111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the LSB)

Q Format Notation

The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such
as addition or subtraction, hardware uses the same logic circuits regardless of
the value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b,. Therefore, you determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n
where
® @ designates that the number is in Q format notation — the Texas

Instruments representation for signed fixed-point numbers.

® m is the number of bits used to designate the two’s complement integer
portion of the number.

® 1 is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

2-5

2 Using the IQmath Library

2-6

Note The range and resolution varies for different Q formats. For specific
details, see Section 3.2 in the Texas Instruments C28x Foundation Software,
IQmath Library Module User’s Guide.

When converting from Q format to floating-point format, the accuracy of the
conversion depends on the values and formats of the numbers. For example,
for single-precision floating-point numbers, which use 24 bits, the resolution
of the corresponding 32-bit number cannot be attained. The 24-bit number
approximates its value by truncating the lower end. For example:

32-bit integer 11110000 11001100 10101010 00001111
Single-precision float +1.1110000 11001100 10101010 x 231
Corresponding value 11110000 11001100 10101010 00000000

Example — Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the
binary point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation, the m = 0 is often
implied, as in

Q.15

In Simulink Fixed Point, this data type is expressed as

sfraci16

or

sfix16_En15

In the Filter Design Toolbox, this data type is expressed as

[16 15]

Fixed-Point Numbers

Example — Q1.30

Multiplying two Q.15 numbers yields a product that is a signed 32-bit data
type with n = 30 bits to the right of the binary point. One bit is the designated
sign bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Q1.30

In Simulink Fixed Point, this data type is expressed as

sfix32_En30
In the Filter Design Toolbox, this data type is expressed as
[32 30]

Example — Q-2.17

Consider a signed 16-bit number with a scaling of 217, This requires n = 17
bits to the right of the binary point, meaning that the most significant bit
is a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two’s complement number 1011. When this number is
extended to 7 bits with sign extension, the number becomes 1111101 and the
value of the number remains the same.
One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total
Therefore, this number is expressed as

Q-2.17

In Simulink Fixed Point, this data type is expressed as

sfix16_En17

2-7

2 Using the IQmath Library

2-8

In the Filter Design Toolbox, this data type is expressed as
[16 17]
Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2*(2) or 4. This means that
the binary point is implied to be 2 bits to the right of the 16 bits, or that there

are n = -2 bits to the right of the binary point. One bit must be the sign bit,
thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16
Therefore, this number is expressed as

Q17.-2

In Simulink Fixed Point, this data type is expressed as

sfix16_E2

In the Filter Design Toolbox, this data type is expressed as

[16 -2]

Building Models

Building Models

You can use IQmath Library blocks in models along with certain core
Simulink, Simulink Fixed Point, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

Converting Data Types

As always, it is vital to make sure that any blocks you connect in a model
have compatible input and output data types. In most cases, IQmath Library
blocks handle only a limited number of specific data types. You can refer to
any block reference page in the alphabetical block reference for a discussion of
the data types that the block accepts and produces.

When you connect IQmath Library blocks and Simulink Fixed Point blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink Fixed Point block to match the data type of the IQmath Library
block. Many Simulink Fixed Point blocks allow you to set their data

type and scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Simulink Fixed Point block to match a connected IQmath Library
block.

Some Signal Processing Blockset blocks and core Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to an IQmath Library block.

Using Sources and Sinks

The IQmath Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Simulink Fixed Point in your
models with IQmath Library blocks.

Choosing Blocks to Optimize Code

In some cases, blocks that perform similar functions appear in more than
one blockset. For example, both the IQmath Library and Simulink Fixed
Point have a Multiply block. When you are building a model to run on C2000
DSP, choosing the block from the IQmath Library always yields better

2-9

2 Using the IQmath Library

optimized code. You can use a similar block from another library if it gives
you functionality that the IQmath Library block does not support, but you
will generate code that is less optimized.

2-10

Blocks — By Category

C2000 Target Preferences Library
(c2000tgtpreflib) (p. 3-2)

Host-side CAN Blocks (¢2000canlib)
(p. 3-3)

C2000 RTDX Instrumentation
Library (rtdxBlocks) (p. 3-4)

C2400 DSP Chip Support Library
(c2400dspchiplib) (p. 3-5)

C280x DSP Chip Support Library
(¢280xdspchiplib) (p. 3-6)

C281x DSP Chip Support Library
(¢281xdspchiplib) (p. 3-7)

C28x Digital Motor Control Library
(¢28xdmclib) (p. 3-9)

C28x IQmath Library (tiigmathlib)
(p. 3-10)

Target preference blocks for C2000
boards

Host-side CAN blocks

RTDX blocks for C2000 boards

Blocks that support C24x boards

Blocks that support C280x boards

Blocks that support C281x boards

Blocks that represent the
functionality of the TI C28x
DMC Library

Blocks that represent the
functionality of the TI IQmath
Library

3 Blocks — By Category

C2000 Target Preferences Library (¢c2000tgtpreflib)

Custom C280x Board

Custom C281x Board

F2808 eZdsp
F2812 eZdsp
LF2407 eZdsp

Target preferences for custom C280x
board

Target preferences for custom C281x
board

F2808 eZdsp DSK target preferences
F2812 eZdsp DSK target preferences

LF2407 eZdsp DSK target
preferences

Host-side CAN Blocks (c2000canlib)

Host-side CAN Blocks (¢2000canlib)

Refer to the CAN Blockset documentation for information on these blocks.

Vector CAN Configuration

Vector CAN Receive

Vector CAN Transmit

CAN Message Packing
CAN Message Packing (CANdb)

CAN Message Filter

CAN Message Unpacking

CAN Message Unpacking
(CANdb)

Configure a CAN channel (either
hardware or virtual) for use with
Vector-Informatik drivers

Read CAN frames from a Vector CAN
channel

Transmit CAN frames on a Vector CAN
channel

Map Simulink signals to CAN messages.

Pack Simulink signals into CAN
messages defined by CANdb

Dispatch message processing based on
message 1D

Inspect and unpack the individual fields
in a CAN message

Decompose a CAN frame into its
constituent signals

3 Blocks — By Category

C2000 RTDX Instrumentation Library (rtdxBlocks)

From RTDX Add RTDX input channel
To RTDX Add RTDX output channel

3-4

C2400 DSP Chip Support Library (c2400dspchiplib)

C2400 DSP Chip Support Library (¢2400dspchiplib)

C24x ADC
C24x CAN Receive

C24x CAN Transmit

C24x CAP

C24x GPIO Digital Input

C24x GPIO Digital Output

C24x PWM
C24x QEP
C24x SCI Receive

C24x SCI Transmit

C24x SPI Receive

C24x SPI Transmit

From Memory

To Memory

Analog-to-digital converter (ADC)

Enhanced Control Area Network
receive mailbox

Enhanced Control Area Network
transmit mailbox

Receive and log capture input pin
transitions

General-purpose I/O pins for digital
input

General-purpose I/O pins for digital
output

Pulse wave modulators (PWMs)
Quadrature encoder pulse circuit

Receive data on the target via serial
communications interface (SCI) from
the host

Transmit data on target via serial
communications interface (SCI) from
host

Receive data via the serial peripheral
interface (SPI) on target

Transmit data via the serial
peripheral interface (SPI) to host

Retrieve data from target memory

Write data to target memory

3-5

3 Blocks — By Category

C280x DSP Chip Support Library (¢280xdspchiplib)

C280x ADC
C280x eCAN Receive

C280x eCAN Transmit

C280x ePWM

C280x eQEP
C280x Hardware Interrupt

From Memory
Idle Task

To Memory

Analog-to-digital converter (ADC)

Enhanced Control Area Network
receive mailbox

Enhanced Control Area Network
transmit mailbox

Configures the C280x Event
Manager to generate Enhanced
Pulse Width Modulator (ePWM)
waveforms.

Quadrature encoder pulse circuit

Create an Interrupt Service Routine
to handle hardware interrupts

Retrieve data from target memory

Create free-running task that
executes downstream subsystem

Write data to target memory

C281x DSP Chip Support Library (c281xdspchiplib)

C281x DSP Chip Support Library (¢281xdspchiplib)

C281x ADC
C281x CAP

C281x eCAN Receive

C281x eCAN Transmit

C281x GPIO Digital Input

C281x GPIO Digital Output

C281x Hardware Interrupt

C281x PWM
C281x QEP
C281x SCI Receive

C281x SCI Transmit

C281x SPI Receive

C281x SPI Transmit

C281x Timer

From Memory

Analog-to-digital converter (ADC)

Receive and log capture input pin
transitions

Enhanced Control Area Network
receive mailbox

Enhanced Control Area Network
transmit mailbox

General-purpose I/O pins for digital
input

General-purpose I/O pins for digital
output

Create an Interrupt Service Routine
to handle hardware interrupts

Pulse wave modulators (PWMs)
Quadrature encoder pulse circuit

Receive data on target via serial
communications interface (SCI) from
host

Transmit data on target via serial
communications interface (SCI) from
host

Receive data via the serial peripheral
interface (SPI) on the target

Transmit data via the serial
peripheral interface (SPI) to the host

Configure up to four general-purpose,
stand-alone Event Manager timers.

Retrieve data from target memory

3-7

3 Blocks — By Category

3-8

Idle Task

To Memory

Create free-running task that
executes downstream subsystem

Write data to target memory

C28x Digital Motor Control Library (c28xdmclib)

C28x Digital Motor Control Library (¢28xdmclib)

Clarke Transformation

Inverse Park Transformation

Park Transformation

PID Controller
Ramp Control

Ramp Generator

Space Vector Generator

Speed Measurement

Convert balanced three-phase
quantities to balanced two-phase
quadrature quantities

Convert rotating reference frame
vectors to two-phase stationary
reference frame

Convert two-phase stationary
system vectors to rotating system
vectors

Digital PID controller

Create a ramp-up and ramp-down
function

Generate ramp output

Duty ratios for stator reference
voltage

Motor speed

3-9

3 Blocks — By Category

C28x IQmath Library (tiigmathlib)

3-10

Absolute IQN
Arctangent IQN
Division IQN
Float to IQN

Fractional part IQN
Fractional part IQN x int32
Integer part IQN

Integer part IQN x int32
IQN to Float

IQN x int32

IQN x IQN

IQN1 to IQN2

IQN1 x IQN2

Magnitude IQN

Saturate IQN
Square Root IQN

Trig Fen IQN

Absolute value
Four-quadrant arc tangent
Divide two IQ numbers

Convert floating-point number to IQ
number

Fractional part of IQ number

Fractional part of result of
multiplying I1Q number and long
integer

Integer part of IQ number

Integer part of result of multiplying
IQ number and long integer

Convert IQ number to floating-point
number

Multiply IQ number with long
integer

Multiply two IQ numbers with same
Q format

Convert I1Q number to different Q
format

Multiply two IQ numbers with
different Q formats

Magnitude of two orthogonal 1Q
numbers

Saturate an 1Q number

Square root or inverse square root
of IQ number

Sine, cosine, or arc tangent of 1Q
number

Blocks — Alphabetical List

Absolute IQN

Purpose Absolute value
Library tiigmathlib in Embedded Target for TI C2000 DSP
Description This block computes the absolute value of an I1Q number input. The

Srah output is also an IQ number.

.

o

Abﬂ:f:;zm Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Dialog A
Box Abzolute IOM [maszk] (link]
Thiz block computes the abzolute value of an [Q number, Both the input
and the output are signed 32-bit fixed-point numbers. The respective
|GMabs function iz selected based on the @ value,
QK I Cancel | Help | Apply |
See Also Arctangent IQN, Division IQN, Float to IQN, Fractional part IQN,

Fractional part IQN x int32, Integer part IQN, Integer part IQN x
int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x
IQN2, Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fecn IQN

4-2

Arctangent IQN

Purpose
Library

Description

IQmath

A
Yp
B

IQNatan2
Arctangent |QN

Dialog
Box

Four-quadrant arc tangent
tiigmathlib in Embedded Target for TI C2000 DSP

This block computes the four-quadrant arc tangent of the IQ number
inputs and produces IQ number output.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: Arctangent IQN |

— Arctangent AN [mazk] (link)

Thiz block computes the 4-quadrant arctangent for o |0 numbers given
in the zame [format. All inputs and outputs are signed 32-bit fiked-paint
rumberz. Depending on the selected option, the output of the block i=
either in radians and varies from pi - to +pi of in per unit [PU] and varies
between -1 and + 1. The respective I0Matan function is selected by the
input data type.

— Parameters

QK. I Cancel | Help | Apply |

Function
Type of arc tangent to calculate, either

® atan2 — Compute the four-quadrant arc tangent with output
in radians with values between -pi and +pi.

® atan2PU — Compute the four-quadrant arc tangent per
unit. If atan2(B,A) is greater than or equal to zero,
atan2PU(B,A) = atan2(B,A)/2*pi. Otherwise, atan2PU(B,A)

4-3

Arctangent IQN

= atan2(B,A)/2*pi+1. The output is in per-unit radians with
values from 0 to 2pi radians.

See Also Absolute IQN, Division IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x
int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x
IQN2, Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fecn IQN

C24x ADC

Purpose
Library

Description

ADC A

SEdx ADGC

Analog-to-digital converter (ADC)
€2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x ADC block configures the C24x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Triggering

The C24x ADC trigger mode depends on the internal setting of the
Source Start-of-Conversion (SOC) signal. The ADC is usually triggered
by software at the sample time intervals specified in the ADC block

— this is unsynchronized mode.

In synchronized mode, the Event (EV) Manager associated with the
same module as the ADC triggers the ADC. In this case, the ADC

is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal
setting. The ADC Start Event is set in the C24x PWM block. See that
block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

Output

The output of the C24x ADC is a vector of uint16 values. The output
values are in the range 0 to 1023 because the C24x ADC is a 10-bit
converter.

4-5

C24x ADC

Modes

The C24x ADC block supports ADC sequential operation in dual and
cascaded modes. In dual mode, either module A or module B can be
used for the ADC block, and two ADC blocks are allowed in the model.
In cascaded mode, both module A and module B are used for a single
ADC block.

Dialog ADC Control pane
Box
x|

|7C24:4 ADC [maszk] (link)

Configures the ADC to output & constant stream of data collected
from the ADC ping on th c2dx DSP.

ADC Cantral Ilnput Chanrels |

ociie: -

Start of conversion:l Software j
Sample time:

oo

Data t_l,lpe:l uint1B j

0K I Cancel | Help |

Module
Specifies which DSP module to use.

e A — Enables the ADC channels in module A (ADCINAO
through ADCINA7)

e B — Enables the ADC channels in module B (ADCINBO
through ADCINB7)

e A and B — Enables the ADC channels in both modules A
and B (ADCINAO through ADCINA7 and ADCINBO through
ADCINB7).

4-6

C24x ADC

Start of conversion
Type of signal that triggers sequential conversions to begin:

e Software — Signal from software

® EVA — Signal from event manager A

® EVB — Signal from event manager B

® External pin— Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-11 for more information on timing.

To set different sample times for different groups of ADC channels,
you must add separate C24x ADC blocks to your model and set
the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

C24x ADC

Input Channels pane

[Z]source Block Parameters: C24x ADE |

C24% ADC [mask] [link]

Configures the ADC to output & constant gtream of data collected
fram the ADC ping onh th c24x DSP.

ADC Cantral | f

Murmnber of cnnversions:l 1

Ll Lef

Conversion no. 1 I ADCIMNAT

I~ Use multiple output parts

Number of conversions
Number of analog-to-digital conversions to perform in a single

sampling sequence.

Conversion no.
Specific ADC channel to associate with each conversion number.

In simultaneous mode, a pair of ADC channels is associated with
each conversion. In oversampling mode, a signal at a given ADC
channel can be sampled multiple times during a single conversion
sequence. To oversample, specify the same channel for more than

one conversion.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use

separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

4-8

C24x ADC

See Also

Note The Discrete Filter block in Simulink accepts only mono
input. To connect a C24x ADC block to this block, you must output
a single channel or connect only one of the ADC’s output ports to
a Discrete Filter block.

C24x PWM

4-9

C24x CAN Receive

4-10

Purpose
Library

Description

Mailboc O)
CAM
Faweive hag

L2 CAN Receive

Enhanced Control Area Network receive mailbox
€2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x Control Area Network (CAN) Receive block generates source
code for receiving CAN messages through a CAN mailbox. The CAN
module on the DSP chip provides serial communication capability
and has six mailboxes — two for receive, two for transmit, and two
configurable for receive or transmit. The C24x supports CAN data
frames in standard or extended format.

The C24x CAN Receive block has up to two and, optionally, three output
ports.

® The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

® The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
(See Data type below for information.)

® The third output port is optional and appears only if Output
message length is selected.

C24x CAN Receive

Dialog
Box

Block Parameters: C24x CAN Receive |

— C24x CAM Receive [mask] (link]

Configures a CAMN mailbox ta recelve messages from the CAN buz ping on
the c24x DSP. When the meszage iz received, emits the function call to
the connected funchion-call subzystem az well as outputs the mezsage
data in zelected format and the meszage data length in bptes.

— Parameters
M ailbos Humber:

E

Meszage identifier:
Ibin2dec["| 110001117

Message type: IStandard [171-bit identifier] ﬂ
Sample time;

|1

Data type: [vint1 5 [

[~ Dutput message length

QK. I Cancel | Help | Apply |

Mailbox number

Unique number between 0 and 5 that refers to a mailbox area
in RAM. Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are
configurable for receive or transmit, and 4 and 5 are transmit
mailboxes. In standard data frame mode, the mailbox number
determines priority.

Message identifier

Identifier of length 11 bits for standard frame size or length

29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a
receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

4-11

C24x CAN Receive

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function call
to be emitted from the mailbox.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] data_buffer[3..2];
Output[2] data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] data_buffer[7..4];

For example, if the received message has two bytes:

data buffer[O0]
data buffer[1]

0x21
0x43

then the uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000

4-12

C24x CAN Receive

Output[3] = 0x0000
Output message length

Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

References Detailed information on the CAN module is in the TMS320LF/ LC240xA
DSP Controller Reference Guide — System and Peripherals, Literature
Number SPRU357B, available at the Texas Instruments Web site.

See Also C24x CAN Transmit

4-13

C24x CAN Transmit

4-14

Purpose

Library

Description

=g

Mailboz: &
CAM
Transmit

CZ24x CAN Transmit

Enhanced Control Area Network transmit mailbox
€2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x Control Area Network (CAN) Transmit block generates
source code for transmitting CAN messages through a CAN mailbox.
The CAN module on the DSP chip provides serial communication
capability and has six mailboxes — two for receive, two for transmit,
and two configurable for receive or transmit. The C24x supports CAN
data frames in standard or extended format.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

C24x CAN Transmit

data
data
data
data
data
data
data
data

buffer[0]
buffer[1]
buffer[2]
buffer[3]
buffer[4]
buffer([5]
buffer([6]
buffer([7]

0x34
0x12
0x00
0x00
0x00
0x00
0x00
0x00

For input of type uint16[2], which is a two-element vector,

inputdata [O0]
inputdata [1]

the data buffer is:

data
data
data
data
data
data
data
data

buffer[0]
buffer[1]
buffer[2]
buffer([3]
buffer[4]
buffer([5]
buffer([6]
buffer([7]

0x1234
0x5678

0x34
0x12
0x78
0x56
0x00
0x00
0x00
0x00

4-15

C24x CAN Transmit

L]
Dlalog =)sink Block Parameters: C24x CAN Transmit x|

Box —C24m CAN Tranzmit (magk] (link)
Configures a CAM mailbox to transmit meszage to the CAM bus pins on the c2dx DSP.

—Parameters
t ailbox number:
tezzage identifier;
Ibin2dec["| 110001117

teszage type:l Standard [11-hit identifier) :I
[~ Enable blocking mode

ok I Cancel | Help Apply |

Mailbox number
Unique number between 0 and 5 that refers to a mailbox area
in RAM. Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are
configurable for receive or transmit, and 4 and 5 are transmit
mailboxes. In standard data frame mode, the mailbox number
determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit

identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If cleared, the CAN block code does not wait

4-16

C24x CAN Transmit
|

for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

References Detailed information on the CAN module is in the TMS320LF/ LC240xA
DSP Controller Reference Guide — System and Peripherals, Literature
Number SPRU357B, available at the Texas Instruments Web site.

See Also C24x CAN Receive

4-17

C24x CAP

4-18

Purpose

Library

Description

GAF

ont

SE4x CAP

Receive and log capture input pin transitions
€2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x CAP block sets parameters for the capture units (CAPs) of the
event manager (EV) module. The capture units log transitions detected
on the capture unit pins by recording the times of these transitions into
a two-level-deep FIFO stack. The capture unit pins can be set to detect

rising edge, falling edge, either type of transition, or no transition.

The C24x chip has six capture units — three associated with each

EV module. Capture units 1, 2, and 3 are associated with EVA and
capture units 4, 5, and 6 are associated with EVB. Each capture unit is
associated with a capture input pin.

Note You can have up to two C24x CAP blocks in any one model — one
block for each EV module.

Each group of EV module capture units can use one of two
general-purpose (GP) timers on the target board. EVA capture units
can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4.
When a transition occurs, the value of the selected timer is stored in the
two-level deep FIFO stack.

Outputs

This block has up to two outputs: a cnt (count) output and an optional,
FIFO status flag output. The cnt output increments each time a
transition of the selected type occurs. The status flag outputs are

® 0 — The FIFO is empty. Either no captures have occurred or the
previously stored capture(s) have been read from the stack. (The
binary version of this flag is 00.)

¢ 1 — The FIFO has one entry in the top register of the stack. (The
binary version of this flag is 01.)

C24x CAP
|

¢ 2 — The FIFO has two entries in the stack registers. (The binary
version of this flag is 10.)

® 3 — The FIFO has two entries in the stack registers and one or more
captured values have been lost. This occurs because another capture
occurred before the FIFO stack was read. The new value is placed in
the bottom register. The bottom register value is pushed to the top of
the stack and the top value is pushed out of the stack. (The binary
version of this flag is 11.)

Dialog Data Format pane

Box
E Source Block Parameters: C24% CAP x|

C24w CAP [mazk] [link)
’7 Configures the Event Manager of the C24x DSP for CAP [capture).

i |capt | capz | caps |
Module:l,é, :I

[T Output overrun status flag

Output data farmat: I Send 1 element [oldest) LI
Sample time;
0.0m
Data bype: | auto ﬂ
ok Lancel | Help |
Module

Event manager (EV) module to use:
e A—Use CAPs 1, 2, and 3
e B— Use CAPs 4, 5, and 6

Output overrun status flag
Select to output the status of the elements in the FIFO. The data
type of the status flag is uint16.

4-19

C24x CAP

4-20

Send data format
The type of data to output:

® Send 2 elements (FIFO Buffer) — Sends the latest two

values. The output is updated when there are two elements
in the FIFO, which is indicated by bit 13 or 11 or 9 being
sent (CAP x FIFO). If the CAP is polled when fewer than two
elements are captures, old values are repeated. The CAP
registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output
at index 0.

¢ The new top value of the FIFO (the previously stored bottom
stack value) is read and stored in the output at index 1.

Send 1 element (oldest) — Sends the older of the two most
recent values. The output is updated when there is at least
one element in the FIFO, which is indicated by any of the bits
13:12, or 11:10, or 9:8 being sent. The CAP registers are read
as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output.

Send 1 element (latest) — Sends the most recent value.
The output is updated when there is at least one element in the
FIFO, which is indicated by any of the bits 13:12, or 11:10, or
9:8 being sent. The CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b If there are two entries in the FIFO, the bottom value is read
and stored in the output. If there is only one entry in the
FIFO, the top value is read and stored in the output.

C24x CAP

Sample time

Time between outputs from the FIFO. If new data is not available,
the previous data is sent.

Data type

Data type of the output data. Available options are auto, double,

single, int8, uint8, int16, uint16, int32, uint32, and boolean.
Selecting auto defaults to double.

CAP# pane

x
”E24H CAP [maszk] [link]

Configures the Event Manager of the C24x DSP for CAP [capture].

[rata Format |

¥ Enable C&P1

P |cer2 | capa |

Edge detection: I Rizing Edge

Time baze: I Timer 2

Sraling: I Mane

Lol Lef Lo

ok Cancel | Help |

The CAP# panes set parameters for individual CAPs. The particular
CAP affected by a CAP# pane depends on the EV module you selected:

e CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.
o CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.
e CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP#
Select to use the specified capture unit pin.

4-21

C24x CAP

Edge detection
Type of transition detection to use for this CAP. Available
types are: Rising Edge, Falling Edge, Both Edges, and No
transition.

Time base
The target board GP timer to use. CAPs 1, 2, and 3 can use
Timer 1 or Timer 2. CAPs 4, 5, and 6 can use Timer 3 or
Timer 4.

Note CAP 1 and CAP 2 must use the same GP timer.
CAP 4 and CAP 5 must use the same GP timer.

Scaling
Clock divider factor by which to prescale the selected GP timer
to produce the desired timer counting rate. Available options are
none, 1/2,1/4,1/8,1/16, 1/32, 1/64, and 1/128. The resulting
rate for each option is shown below.

Scaling Resulting Rate (ps)
none 0.025

1/2 0.05

1/4 0.1

1/8 0.2

1/16 0.4

1/32 0.8

1/64 1.6

1/128 3.2

4-22

C24x CAP

Note The above rates assume a 40 MHz input clock.

4-23

C24x GPIO Digital Input

4-24

Purpose
Library

Description

GFIC Dl

CR4:EPI0_DI

Dialog
Box

General-purpose I/O pins for digital input
€2400dspchiplib in Embedded Target for TI C2000 DSP

This block configures the general-purpose I/0 (GPIO) registers that
control the GPIO shared pins for digital input. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/0 operation.

E! Block Parameters: C24xGPIO_DI x|

— 24 GPIO Digital Input [maszk] (link]

The digital 1/0 portz module provides a flexible method for controlling both dedicated
1/0 and shared pin functions. All 170 and shared pin functions are contralled wzing nine
1B-bit registers,

—Parameters

|0 Port: At
I BitD

[Bit1

[Bit2

[Bit3

[~ Bit4

[Bit5

[~ BitE

[Bit7
Sample time;
|o.0m

Data tppe: | auto ﬂ

1] I Cancel Help | Apply |

C24x GPIO Digital Input

I0 Port

Select the input/output port to use: I0PA, I0PB, IOPC, I0PD, IOPE,

or IOPF and select the I/O port bits to enable for digital input.

If you select multiple bits, vector input is expected. Unselected
bits are available for peripheral functionality. Note that multiple
GPIO DI blocks cannot share the same I/O port. Only one bit is

available for IOPD.

Note The input function of

the digital I/O and the input path

to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral

function cannot be used.

The following tables show the shared pins.

10 MUX Output Control Register A

Bit Peripheral Name GPIO Name
3 QEP1/CAP1 IOPA3
4 QEP2/CAP2 IOPA4
5 CAP3 IOPA5
6 PWM1 IOPA6
7 PWM2 IOPA7
8 PWM3 IOPBO
9 PWM4 I0OPB1
10 PWM5 I0PB2
11 PWM6 IOPB3

4-25

C24x GPIO Digital Input

10 MUX Output Control Register C

Bit Peripheral Name GPIO Name
1 PWM7 IOPE1
2 PWMS8 IOPE2
3 PWM9 IOPE3
4 PWM10 IOPE4
5 PWM11 IOPE5
6 PWM12 IOPE6
7 QEP3/CAP4 IOPE7
8 QEP4/CAP5 IOPFO
9 CAP6 IOPF1

Sample time
Time interval, in seconds, between consecutive input from the
pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type.
Valid data types are auto, double, single, int8, uint8, int16,
uint16, int32, uint32 or boolean.

See Also C24x GPIO Digital Output

4-26

C24x GPIO Digital Output

Purpose
Library

Description

GFIC DO

CR4xGRIO_DoO

General-purpose I/0 pins for digital output
€2400dspchiplib in Embedded Target for TI C2000 DSP

This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/0 operation.

Note The input function of the digital I/O and the input path to the
related peripheral are always enabled on the board. If you configure a
pin as digital I/O, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

10 MUX Output Control Register A

Bit Peripheral Name GPIO Name
3 QEP1/CAP1 IOPA3
4 QEP2/CAP2 IOPA4
5 CAP3 IOPA5
6 PWM1 IOPA6
7 PWM2 IOPA7
8 PWM3 IOPBO
9 PWM4 IOPB1
10 PWM5 I0PB2
11 PWM6 IOPB3

4-27

C24x GPIO Digital Output

4-28

Dialog
Box

10 MUX Output Control Register C

Bit Peripheral Name GPIO Name
1 PWM7 IOPE1

2 PWMS8 IOPE2

3 PWM9 IOPE3

4 PWM10 IOPE4

5 PWM11 IOPE5

6 PWM12 IOPE6

7 QEP3/CAP4 IOPE7

8 QEP4/CAP5 IOPFO

9 CAP6 IOPF1
x

—C24% GPIO Digital Dutput [mask] (link)

The digital |/0 ports module provides a Hexible method for controlling both dedicated
140 and zhared pin functions, All 1D and shared pin functions are controlled uzing nine
16-bit registers.

—Parameters

10 Port: [T |
¥ Eitn
I~ Bit1
I~ Btz
I~ Eit3
I~ Bit4
[~ Bt
I~ BitE
I~ Eit7

OF. I LCancel Help Apply

C24x GPIO Digital Output
|

10 Port
Select the input/output port to use: I0PA, I0PB, IOPC, I0PD, IOPE,
or IOPF and select the bits to enable for digital output. If you
select multiple bits, vector input is expected. Unselected bits
are available for peripheral functionality. Note that multiple
GPIO DO blocks cannot share the same I/O port. Only one bit is
available for I0PD.

See Also C24x GPIO Digital Input

4-29

C24x PWM

Purpose
Library

Description

Pt

S Pwhil

4-30

Pulse wave modulators (PWMs)
€2400dspchiplib in Embedded Target for TI C2000 DSP

LF2407 DSPs include a set of pulse width modulators (PWM) used to
generate various signals. This block provides options to set the A or
B module Event Managers to generate the waveforms you require.
The twelve PWMs are configured in six pairs, with three pairs in each
module.

Note All inputs to the C24x PWM block must be scalar values.

C24x PWM

Dialog Timer pane

Box
x

’—E24>: Pt maszk] (link)

Configures the Event Manager of the C24% DSP to generate Pwb waveforms.

Timer IDutputs I Logic I Deadband |.&DC Contral I

Mocuic: S

W aveform period snurce:l Specify via dialog ;I

waveform period:
0.0001

i aveform t_l,Jpe:I Aspmmetric

=
=

W aveform period units:l Seconds

QK I Cancel | Help Apply

Module
Specifies which target PWM pairs to use:

e A — Enables the PWMs in module A (PWM1/PWM2,
PWM3/PWM4, and PWM5/PWMG6)

e B — Enables the PWMs in module B (PWM7/PWMS,
PWM9/PWM10, and PWM11/PWM12)

4-31

C24x PWM

Note PWMs in module A use event manager A, timer 1, and
PWDMs in module B use event manager B, timer 3. You should
make sure that the TimerClock selected in the Scheduling
section of the LF2407 eZdsp Target Preferences block does not
conflict with the timers used for the PWMs.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note “Clock cycles” refers to the peripheral clock on the LF2407
chip. This clock is 40 MHz by default because the timer prescaler
is set to 1.

Waveform type
Type of waveform to be generated by the PWM pair. The LF2407
PWDMs can generate two types of waveforms: Asymmetric and
Symmetric. The illustration below shows the difference between
the two types of waveforms.

4-32

C24x PWM

Asymmetric wavelim
Waveform

— Rzaling
metric '.'.'u'ne’lnm'l'ls‘E
avetorm

Waveform period units
Units in which to measure the waveform period. Options are
clock cycles, which refer to the peripheral clock on the LF2407
chip (40 MHz), or seconds. Note that changing these units
changes the Waveform period value and the Duty cycle value
and Duty cycle units selection.

4-33

C24x PWM

4-34

Outputs pane

E! Block Parameters: C24x PWM

Configures the Event Manager of the C24% DSP to generate Pwb waveforms.

’—E24>: Pt maszk] (link)

ILogic I Deadband | ADC Cantrol

v Enable Pwhil/Phd2

Dty cycle source:l Specify via dialog

Cruty cycle:

|50
¥ Enable P/M /P4

Doty cycle zounce: | Specify via dialog

Dty cycle:

|50
¥ Enable Pu/ME/PwME

Doty cycle zounce: | Specify via dialog

Dty cycle:

50

Doty cycle units:l Percentages

0k I Cancel | Help

| Apply |

Enable PWM#/PWMi#
Select to activate the PWM pair(s).

Duty cycle source

Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
Cycle or select Input port to use a value, in seconds, from the

input port.
Duty cycle

PWM waveform pulse duration expressed in Duty cycle units.

C24x PWM

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and
Percentages. Note that changing these units changes the Duty
cycle value, and the Waveform period value and Waveform
period units selection.

Logic pane

E! Block Parameters: C24x PWM |

"C24H Pt [rnazk)] [link)

Configures the Event Manager of the C24x DSP to generate Fib waveforms,

Timer | Outputs | IDeadband ADC Control

Cantral logic snurce:l Specify via dialog

Pt control Iogic:l Agtive high

P2 control Iogic:l Artive low

Pu'b 3 control Iogic:l Agtive high

Pt 4 control Iogic:l Artive low

Put5 cantrol Iogic:l Agtive high

Lol Lef L] Lef Lo L] Lo

PuME cantrol Iogic:l Artive low

0k I Cancel | Help | Apply |

Control logic source
Source from which the control logic is obtained for all PWMs.
Select Specify via dialog to enter the values in the PWM#
control logic fields or select Input port to use values from the
input port.

4-35

C24x PWM
|

PWMi# control logic

Control logic trigger for the PWM. Forced high causes the pulse
value to be high. Active high causes the pulse value to go from

low to high. Active low causes the pulse value to go from high to
low. Forced low causes the signal to be low.

Deadband pane

[Z1Block Parameters: C24x PWM

x|
’7E24>: Pradhd [rmazk] [link)

Configures the Event Manager of the C24x DSP to generate P waveforms,

[~ Use deadband for P 1P 2
[~ Use deadband for Pid 3P4
[~ Usze deadband for PR/ MEBFWIE
Deadband prescaler:l 1

Deadband period source:l Specify via dialog
Deadband period:l 1

Lol Lef L

-
o
L
oy

Use deadband for PWM#/PWM#

Enables a deadband area of no signal overlap at the beginning

of particular PWM pair signals. The following figure shows the
deadband area.

4-36

C24x PWM

11 | PWMacive figh

Deadband — e |
' PWM active low

Deddbdnd Ared

Deadband prescaler
Number of clock cycles, which when multiplied by the deadband
period, determines the size of the deadband. Selectable values
are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which to obtain the deadband period. Select Specify
via dialog to enter the value in Deadband period or select
Input port to use a value, in clock cycles, from an external
source.

Deadband period
Value that, when multiplied by the deadband prescaler,
determines the size of the deadband. Selectable values are from 1
to 15 clock cycles.

4-37

C24x PWM

4-38

ADC Control pane
x

’—E24>: P [mask] [link]

Configures the Event kanager of the C24x DSP to generate P waveforms.

ADC start eventl MHone ;I

Tirner I Outputs I Logic: I Deadband ,.f.\

QK I Cancel | Help | Apply |

ADC start event
Controls whether this PWM and ADC associated with the same
EV module are synchronized. Select None for no synchronization
or select an interrupt to generate the source start-of-conversion
(SOC) signal for the associated ADC.

® None — The ADC and PWM are not synchronized. The EV
does not generate an SOC signal and the ADC is triggered by
software (that is, the analog-to-digital conversion occurs when
the ADC block is executed in the software).

C24x PWM

e Underflow interrupt — The EV generates an SOC signal for
the ADC associated with the same EV module when the board’s
general-purpose (GP) timer counter reaches a hexadecimal
value of FFFFh.

® Period interrupt — The EV generates an SOC signal for the
ADC associated with the same EV module when the value of
the GP timer matches the value in the period register. The
value set in Waveform period above determines the value
in the register.

Note If you select Period interrupt and specify a sampling
time less than the specified (Waveform period)/(CPU clock
speed), zero-order hold interpolation will occur. For example,
if you enter 64000 as the waveform period, the period for the
ADC register is 64000/40 MHz = 0.0016. If you enter a Sample
time in the C24x ADC dialog that is less than this result, it
will cause zero-order hold interpolation.

e Compare interrupt — The EV generates an SOC signal for
the ADC associated with the same EV module when the value
in the GP timer matches the value in the compare register.
The value set in Pulse width above determines the value in
the register.

See Also C24x ADC

4-39

C24x QEP

4-40

Purpose
Library

Description

QEP

G4 ER

Quadrature encoder pulse circuit
€2400dspchiplib in Embedded Target for TI C2000 DSP

Each L2407 Event Manager has three capture units, which can log
transitions on its capture unit pins. Event manager A (EVA) uses
capture units 1, 2, and 3. Event manager B (EVB) uses capture units
4,5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts
quadrature encoded input pulses on these capture unit pins. QEP
pulses are two sequences of pulses with varying frequency and a fixed
phase shift of 90 degrees (or one-quarter of a period). Both edges of
the QEP pulses are counted so the frequency of the QEP clock is four
times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful
for obtaining speed and position information from a rotating machine.
Logic in the QEP circuit determines the direction of rotation by which
sequence is leading. For module A, if the QEP1 sequence leads, the
general-purpose (GP) timer counts up and if the QEP2 sequence leads,
the timer counts down. The pulse count and frequency determine the
angular position and speed.

C24x QEP

Dialog =)5ource Block Parameters: C24:0EP |
Box G ER el

Configures quadrature encoder pulze circuit aszociated with the zelected Event

i anager module to decode and count guadrature encoded pulzes applied to related
input pinz [QEFT and QEP2 for EWA or QEP3 and QEP4 for EVE). Depending on the
zelected counting mode, the output iz either the pulse count or the rotor speed [when
a pulze gignal comes from an optical encoder mounted on a rotating machine].

—Parameters

Mocule: TS

Counting mode: I Counter LI

Sample time:
joom

Drata t_l,Jpe:I auto LI

Module
Specifies which QEP pins to use:

* A — Uses QEP1 and QEP2 pins.
® B — Uses QEP3 and QEP4 pins.

Counting mode
Specifies how to count the QEP pulses:

® Counter — Count the pulses based on the board’s GP Timer 2
(or GP Timer 4 for EVB).

® RPM — Count the machine’s revolutions per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the
direction to use as positive rotation. This field appears only if
you select RPM above.

Encoder resolution
Number of QEP pulses per revolution. This field appears only
if you select RPM above.

4-41

C24x QEP

Sample time
Time interval, in seconds, between consecutive reads from the
QEP pins.

Data type
Data type of the QEP pin data. The data is read as 16-bit data
and then cast to the selected data type. Valid data types are auto,
double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

4-42

C24x SCI Receive

Purpose

Library

Description

SGl

Rece e Fix

SE24x 5G] Receine

Dialog
Box

Receive data on the target via serial communications interface (SCI)
from the host

€2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals
in non-return-to-zero (NRZ) format. This block configures the C24x
DSP target to receive scalar or vector data from the COM port via the
C24x target’s COM port.

Note You can have only one C24x SCI Receive block in a single model.

Many SCI-specific settings are in the DSPBoard section of the LF2407
eZdsp target preferences block. You should verify that these settings
are correct for your application.

E! Source Block Parameters: C24x SCI R x|

—C24u SCI Receive [mazk)] [link)]

Configures Serial Communication Interface [SCI) of the C24x DSP to
receive data from SCIR=D pin. Thiz enables asynchronous serial
digital communications between the DSP and other peripherals that
use the standard NRZ [non-return-to-zera)] format.

—Parameters

Sample time:
01

D ata lype:l uintg LI

0K I Cancel | Help |

4-43

C24x SCI Receive

Note If you open this block from the SCI-Based Host-Target
Communication demo, you will see an additional parameter used only
in that demo.

Sample time
Sample time, T, for the block’s input sampling.

Data type
Data type of the output data. Available options are int8 and
uint8.

See Also C24x SCI Transmit

4-44

C24x SCI Transmit

Purpose

Library

Description

SGl

T TrRnsmit

G2d4x 5G] TRnsmit

Dialog
Box

Transmit data on target via serial communications interface (SCI) from
host

€2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x SCI Transmit block transmits scalar or vector data in int8 or
uint8 format from the C24x target’s COM ports in non-return-to-zero
(NRZ) format. You can specify how many of the six target COM ports to
use. The sampling rate and data type are inherited from the input port.
If no data type is specified, the default data type is uints.

Note You can have only one C24x SCI Transmit block in a single model.

Many SCI-specific settings are in the DSPBoard section of the LF2407
eZdsp target preferences block. You should verify that these settings
are correct for your application.

I 5ink Block Parameters: C24x% SCI Transmit x|

—LC24% SCI Transmit [mask] [link]

Configures Serial Communication Interface [SC1) of the C24x DSP to tranzmit data via
SCITHD pin. Thiz enables azunchronous genal digital communications between the
DSF and other peripherals that use the standard NRZ [hon-return-to-zera] format.

—Parameters

Mumber of dimenzions: | 1 :l

Cancel Help Apply

4-45

C24x SCI Transmit

Note The parameter shown in this block is active only for demos, i.e.,
if you open the block from the SCI-Based Host-Target Communication

demo.

See Also C24x SCI Receive

4-46

C24x SPI Receive

Purpose
Library

Description

SFPI

Rece e Fix

SE24x 5P| Receie

Dialog
Box

Receive data via the serial peripheral interface (SPI) on target
€2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x SPI Receive supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOM1 pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

Note You can have only one C24x SPI Receive block in a single model.

Many SPI-specific settings are in the DSPBoard section of the LF2407
eZdsp target preferences block. You should verify that these settings
are correct for your application.

E! Source Block Parameters: C24x SPIR x|

—LC24% 5P Receive [mask] [link)

C24% 5P Receive block. receives data from SPISOMO and SPISIMI
pin when running in slave and master mode, respectively.

—Parameters

Sample time:
0.001

Data t_l,Jpe:I auto j

ok, I Cancel | Help |

4-47

C24x SPI Receive

Sample time
Sample time, T, for the block’s input sampling.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.

See Also C24x SPI Transmit

4-48

C24x SPI Transmit

Purpose
Library

Description

SFPI

T TrRnsmit

G24x 5P| Trnsmit

Dialog
Box

See Also

Transmit data via the serial peripheral interface (SPI) to host
€2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x SPI Transmit supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOM1 pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate and data type are inherited from the input port. If
no data type is specified, the default data type is uint16.

Note You can have only one C24x SPI Transmit block in a single model.

Many SPI-specific settings are in the DSPBoard section of the LF2407
eZdsp target preferences block. You should verify that these settings
are correct for your application.

E Sink Block Parameters: C24x SPI Transmikt x|

|7C24:4 SPI Tranzsmit [maszk] [link)

C24% SPI Transmit block tranzmitz data via SPISIMI and SPISOMO pin when mnning
in magter and glave mode, respectively.

Cancel Help Apply

C24x SPI Receive

4-49

C280x ADC

4-50

Purpose

Library

Description

AL

GRS
A

ADG

Analog-to-digital converter (ADC)
c280xdspchiplib in Embedded Target for TI C2000 DSP

The C280x ADC block configures the C280x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Output

The output of the C280x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C280x ADC is 12-bit
converter.

Modes

The C280x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

C280x ADC

Dialog ADC Control pane

Box
E Source Block Parameters: ADC x|

|7C28EI:4 ADC [magk]

Configures the ADC to output & constant ztream of data collected
from the ADC ping on th c280x DEP,

Module:l b j
Conversion mnde:l Seguential j
Start of conversion:l Software j
Sample time:

oo

Data t_l,lpe:l uint1B j

[~ Post interupt at the end of conversion

ok I Cancel | Help |

Module
Specifies which DSP module to use:

® A — Displays the ADC channels in module A (ADCINAO
through ADCINAT7).

® B — Displays the ADC channels in module B (ADCINBO
through ADCINB7).

®* A and B — Displays the ADC channels in both modules A
and B (ADCINAO through ADCINA7 and ADCINBO through
ADCINBY).

Conversion mode
Type of sampling to use for the signals:

® Sequential — Samples the selected channels sequentially.

4-51

C280x ADC

® Simultaneous — Samples the corresponding channels of
modules A and B at the same time.

Start of conversion
Type of signal that triggers conversions to begin:

e Software — Signal from software. Conversion values are
updated at each sample time.

® ePWMxA / ePWMxB / ePWMxA_ePWMxB — Start of conversion is
controlled by user-defined PWM events.

® XINT2_ADCSOC — Start of conversion is controlled by the
XINT2_ADCSOC external signal pin.

The choices available in Start of conversion depend on the
Module setting. The following table summarizes the available
choices. For each set of Start of conversion choices, the default
is given first.

Module Start of Conversion Choices

Setting

A Software, ePWMxA, XINT2_ADCSOC

B ePWMxB, Software

A and B Software, ePWMxA, ePWMxB, ePWMxA_ePWMxB,
XINT2_ADCSOC

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-11 for more information on timing.

To set different sample times for different groups of ADC channels,

you must add separate C280x ADC blocks to your model and set
the desired sample times for each block.

4-52

C280x ADC

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Select this check box to post an asynchronous interrupt at the
end of each conversion. Note that the interrupt is always posted
at the end of conversion.

Input Channels pane

E Source Block Parameters: C280x ADC x|

|7C2BEI:< ADC [maszk] [link)

Configures the ADC to output a constant stream of data collected
fram the ADC ping on th c280x DSP.

ADC Cantral |

Mumber of cnnversions:l 1

Ll Lef

Conversion na, 1 I ADCINAD
I~ Usze multiple autput ports

ok I Cancel Help |

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.

4-53

C280x ADC

To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also C280x ePWM, C280x Hardware Interrupt

4-54

C280x eCAN Receive

Purpose
Library

Description

CQSD%

ecan ROy M9

eCAN Receive

Enhanced Control Area Network receive mailbox
c280xdspchiplib in Embedded Target for TI C2000 DSP

The C280x enhanced Control Area Network (eCAN) Receive block
generates source code for receiving eCAN messages through an

eCAN mailbox. The eCAN modules on the DSP chip provide serial
communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x supports eCAN data frames in standard
or extended format.

The C28x eCAN Receive block has up to two and, optionally, three
output ports.

® The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

® The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is always 8 bytes.

® The third output port is optional and appears only if Output
message length is selected.

4-55

C280x eCAN Receive

(]
Dialog x

Box —C280x eCAN FReceive [mask) [link]
Configures an eCAM mailbox to receive messages from the eCAN buz pins on the
c280% DSP. When the meszage is received, emits the function call to the connected
function-call subzystem az well a5 outputs the meszage data in selected farmat and
the meszage data length in bytes.

—Parameters

t ailbox number:

i
tezzage identifier;
Ibin2dec["| 110001117

teszage type: I Standard [17-hit identifier] :I
Sample tirme:

i

Drata type: I uint16 j

[~ Dutput message length

[~ Puost intermupt when message is received

QK I Cancel | Help |

Module
Determines which of the two eCAN modules is being configured

by this instance of the C280x eCAN Receive block. Options are
eCAN_A and eCAN_B.

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for

enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a

4-56

C280x eCAN Receive

receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function call
to be emitted from the mailbox.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are rightaligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];

Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] data_buffer[7..4];

For example, if the received message has two bytes,

data buffer[0] = 0x21
data buffer[1] 0x43

then the uint16 output would be:

4-57

C280x eCAN Receive

4-58

References

See Also

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Select this check box to post an asynchronous interrupt when a
message is received.

Detailed information on the eCAN module is in the TMS320x281x, 280x
Enhanced Controller Area Network (eCAN) Reference Guide (Rev. D),
Literature Number SPRU074D, available at the Texas Instruments
Web site.

C280x eCAN Transmit, C280x Hardware Interrupt

C280x eCAN Transmit

Purpose

Library

Description

=g

L2800

eCAN SMT

eCAN Transmit

Enhanced Control Area Network transmit mailbox
c280xdspchiplib in Embedded Target for TI C2000 DSP

The C280x enhanced Control Area Network (eCAN) Transmit block
generates source code for transmitting eCAN messages through an
eCAN mailbox. The eCAN modules on the DSP chip provide serial
communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x supports eCAN data frames in standard
or extended format.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer:

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

4-59

C280x eCAN Transmit

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

4-60

C280x eCAN Transmit
|

.
Dlalog S sink Block Parameters: eCAN Transmit |

Box — L2802 eCaM Tranzmit [mazk] (link)

Configures an eCAM mailbox ta tranzmit meszage to the CAM bus ping on the c280s
DSP.

—Parameters

M ocule [

t ailbox number:
jo

tezzage identifier:
|hin2dec['1 110001117

teszage type:l Standard [11-bit identifier] ;I
[+ Enable blocking mode

Ok I Cancel | Help | Apply |

Module
Determines which of the two eCAN modules is being configured
by this instance of the C280x eCAN Transmit block. Options are
eCAN_A and eCAN_B.

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

4-61

C280x eCAN Transmit

4-62

References

See Also

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If not selected, the CAN block code does not
wait for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Detailed information on the eCAN module is in the TMS320x281x, 280x
Enhanced Controller Area Network (eCAN) Reference Guide (Rev. D),
Literature Number SPRU074D, available at the Texas Instruments
Web site.

C280x eCAN Receive

C280x ePWM

Purpose Configures the C280x Event Manager to generate Enhanced Pulse
Width Modulator (ePWM) waveforms.
Library c280xdspchiplib in Embedded Target for TI C2000 DSP
Description A C280x system contains multiple ePWM modules, each having two
TET PWM outputs. The C280x ePWM block lets you configure up to six

ePWM modules.

e P
=1

4-63

C280x ePWM

Dialog General pane
Box

[Z1Block Parameters: ePWM |

’7C2BDH Pt [mask] [link]

Configures the Event Manager of the C280x DSP to generate eFwh waveforms.

General I eP'whdd, output I eP'whB output | Deadband unit | ADC contral | P chopper contral | Trip Zone urit I

hodule:
W aveform period units:l Seconds :I
W avefaormn period source:l Specify via dialog LI

W aveform period:
0,000

Counting mode:l Up

Sync output selectinn:l Dizable

Enable phase offzet snurce:l Input port

TE clock prescaler divider:l 1

Lol Lef Le] Lef L]

High Speed TE clock prescaler divider:l 1

ok I Cancel | Help | Apply |

Module
Specifies which target ePWM module to use. Possible values are
ePWM1 through ePWM6.

Waveform period units
Specifies the units in which the Waveform period is expressed.
Choose Seconds (the default) or Clock cycles.

4-64

C280x ePWM

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in Waveform period units.

Note “Clock cycles” refers to the Time-base Clock on the C280x
chip. See the discussion of the TB clock prescaler divider below
for an explanation of how the Time-base Clock speed is calculated.

Counting mode
Specifies the counting mode in which to operate. C280x PWMs
can operate in three distinct counting modes: Up, Down, and
Up-Down. The following illustration shows the waveforms that
correspond to these three modes:

Up Down Up-Down

Pulse width value

Sync output selection
Specifies the source that generates the EPWMxSYNCO signal,
if any. The available choices are EPWMxSYNCI or SWFSYNC,
CTR=Zero, CTR=CMPB, and Disable (the default).

Enable S/W sync input port
This check box appears only when you choose EPWMxSYNCI or
SWFSYNC in Sync output selection. Check to enable the input
port.

4-65

C280x ePWM

Enable phase offset source
Determines whether the ePWM module will use a phase offset
and, if so, its source. Choices are Input port (the default),
Specify via dialog, and Disable.

Phase offset value
This field appears only when you select Specify via dialog in
Enable phase offset source. Enter the counter phase offset
value relative to the time-base that is supplying the sync-in signal.

TB clock prescaler divider
This value, together with the High Speed TB clock prescaler
divider value, determine the clock speed of the Time-Base
submodule, which provides all event timing for the ePWM. The
Time-base Clock’s speed (TBCLK) is the result of dividing the
system clock speed by the product of the High Speed TB clock
prescaler divider (HSPCLKDIV) and the TB clock prescaler
divider (CLKDIV) as in the following formula:

TBCLK = SYSCLKOUT/(HSPCLKDIV * CLKDIV)

Because the default values for both the High Speed TB clock
prescaler divider and the High Speed TB clock prescaler
divider are both 1, the default value of the Time-base Clock is
equal to the system clock speed of 100 MHz

Choices are 1, 2, 4, 8, 16, 32, 64, and 128.

High Speed TB clock prescaler divider
See the discussion of the TB clock prescaler divider above
for an explanation of this value’s role in setting the speed of the
Time-base Clock. Choices are 1, 2, 4, 6, 8, 10, 12, and 14.

ePWMA output and ePWMB output panes

The ePWMA output pane and ePWMB output pane include the
same settings, although the default value is different in some cases,
as noted below.

4-66

C280x ePWM

[Z)Block Parameters: ePWM

Configures the Event Manager of the C280x DSP to generate eP'Wh waweforms.

’7C2BDH Pt [mask] [link]

General

¥ Enable ePwh14
[~ Usze deadband for ePtw/i 14

I eF'wMEB autput Deadband unit | ADC contral Pt chopper cantral Trip £ane unit I

Dty cycle units:l Percentages

Dty cycle snurce:l Specify via dialog

Dty cycle:

Ll Lef

50

Action when cnunter=ZEFiEl:| Clear

Action when counler=F'F|D:| Do hiothing

Actioh when counter=ChPd, on C&U:I Set

Action when counter=CMPE on CBU:I Do nathing

Compare value reload condition:l Load on CTR=Zern

[~ Enable continuous S farce input port

Lel Lef Le] Lef L]

Continuous S force Iogic:l Farzing Dizable

Reload condition for 55 force: I Zem

Ll Lef

o |

Cancel

Help

Apply

4-67

C280x ePWM

5I
C280: eP'w [mask] [link]
’7 Configures the Event Manager of the C280x DSP to generate eP'Wh waweforms.
General I eFawhA output I Deadband unit | ADC contral Pt chopper cantral Trip £ane unit I
¥ Enable eP't1E
[~ Usze deadband for eP/M1B
Dty cycle units:l Percentages :I
Dty cycle snurce:l Specify via dialog j
Dty cycle:
50
Action when cnunter=ZEFiEl:| Do nothing j
Actian when counler=F'F|D:| Set :l
Action when counter=CMPA an C&U:I Do nathing :I
Action when counter=CMPE on CBU:I Clear :I
Compare value reload condition:l Load on CTR=Zern :I
[~ Enable continuous S farce input port
Continuous S force Iogic:l Farzing Dizable :I
Reload condition for 5. fnrce:l Zem :I

ok I Cancel Help | Apply |

Enable ePWMxA

Enable ePWMxB
Select to enable the ePWMA and/or ePWMB output signals for the
module that is currently chosen in the General pane. By default,
both Enable ePWMxA and Enable ePWMxB are selected for
each of the six ePWM modules you can select in the General pane.

4-68

C280x ePWM

Use deadband for ePWMxA

Use deadband for ePWMxB
Enables a deadband area of no signal overlap between pairs of
ePWM output signals. In all cases, this check box is cleared by
default.

Duty cycle units
Specifies the units in which the Duty cycle value is expressed:
Percentages (the default) or Clock cycles.

Duty cycle source
Specifies the source from which the pulse width is to be obtained.
Choose Specify via dialog (the default) to enter a value in the
Duty cycle field, or Input port to use a value from the input
port.

Duty cycle
This field appears only when you choose Specify via dialogin
Duty cycle source. Enter a value that specifies the pulse width,
in the units specified in Duty cycle units.

Action when counter=ZERO

Action when counter=PRD

Action when counter=CMPA on CAU

Action when counter=CMPA on CAD

Action when counter=CMPB on CBU

Action when counter=CMPB on CBD
These settings, along with the other remaining settings in the
ePWMA output and ePWMB output panes, determine the
behavior of the Action Qualifier (AQ) submodule. Based on these
settings, the AQ module decides which events are converted into
various action types, thereby producing the required switched
waveforms of the ePWMxA and ePWMxB output signals.

For each of these four fields, the available choices are Do nothing,
Clear, Set, and Toggle.

4-69

C280x ePWM

The default values for these fields vary between the ePWMA
output and ePWMB output panes. The following table shows
the defaults for each of these panes:

Action when ePWMA output ePWMB output
counter=... pane pane

ZERO Clear Do nothing

PRD Do nothing Set

CMPA on CAU Set Do nothing
CMPA on CAD Do nothing Do nothing
CMPB on CBU Do nothing Clear

CMPB on CBD Do nothing Do nothing

For a detailed discussion of the AQ submodule, see the
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide (SPRU791), available on the Texas Instruments
Web site.

Compare value reload condition

Enable continuous S/W force input port

Continuous S/W force logic

Reload condition for S/W force
These four settings determine how the AQ module handles the
S/W force event, an asynchronous event initiated by software
(CPU) via control register bits.

Compare value reload condition determines if and when the
Action-qualifier S/W Force Register is reloaded from a shadow
register. Choices are Load on CTR=Zero (the default), Load on
CTR=PRD, Load on either, and Freeze.

Enable continuous S/W force input port specifies the source
from which the control logic is obtained. This check box is cleared

4-70

C280x ePWM

by default. Select this check box to obtain the control logic from
the input port

Continuous S/W force logic specifies what type of S/W force
logic to use if the continuous S/W force input port is not enabled.
Choices are Forcing Disable (the default), Forcing Low, and
Forcing High.

Reload condition for S/W force — Choices are Zero (the
default), Period, Either period or zero, and Immediate.

Deadband unit pane

The Deadband unit pane lets you specify parameters for the
Dead-Band Generator (DB) submodule. Since using the DB submodule
is not required for generating a deadband in PWM output, this pane is
empty by default. The elements of the Deadband unit pane shown in
the following image appear only when you select either or both of the
Use deadband for ePWMxA or Use deadband for ePWMxB check
boxes in the ePWMA output or ePWMB output panes.

4-71

C280x ePWM

[]Block Parameters: ePWM |

"EQBDH eFwM [mask] (link]

Configures the Event Manager of the C280x DSP to generate ePwd waveloms.

I ADC contral Pt chopper cantrol Trip Zone unit I

General I eFwbA autput I eF'wMEB autput

[Deadband pnlarity:l AH LI

Deadband period source:l Specify via dialog :I
RED deadband period [0~1023);

jo

FED deadband periad [0~1023):

jo

ok I Cancel | Help | Apply |

Deadband polarity

Configures the deadband polarity as AH (active high, the default),
AL (active low), AHC (active high complementary), or ALC (active

low complementary).

Deadband period source

Specifies the source from which the control logic is to be obtained.
Choose Specify via dialog (the default) to enter explicit values,

or Input port to use a value from the input port.

4-72

C280x ePWM

RED deadband period

This field appears only when Use deadband for ePWMxA is
selected in the ePWMA output pane. Enter a value from 0 to
1023 to specify a rising edge delay.

FED deadband period

This field appears only when Use deadband for ePWMxB is
selected in the ePWMB output pane. Enter a value from 0 to
1023 to specify a falling edge delay.

ADC control pane

The ADC control pane lets you specify conditions under which ADC
start of conversion is triggered by either or both of the ePWMA and
ePWMB outputs.

4-73

C280x ePWM

4-74

5I
’7C2BDH Pt [mask] [link]

Configures the Event Manager of the C280x DSP to generate eFwh waveforms.

General I ePwhd output I ePw/MB output I Deadband umit | ADC contral IF"W'M chopper control Trip Zone urit I
[v Enable ADC start module &

Mumber of event for SOCA to be generated:l Firzt event j
Module & counter match event condition:l CTR=Zemo |
[w iEnable ADC start module B

Mumber of event for SOCE to be generated:l Firzt event j
Module B counter match event condition:l CTR=Zem j

ok I Cancel | Help | Apply

Enable ADC start module A

Select to allow ePWMA to trigger ADC start of conversion. This

check box is cleared by default.
Number of event for SOCA to be generated

This field appears only when you check the Enable ADC start
module A check box. Specify how often you want ADC start of
conversion to be triggered. First event triggers ADC start of
conversion with every event, Second event triggers ADC start
of conversion with every second event, and Third event triggers

ADC start of conversion with every third event.

C280x ePWM

Module A counter match event condition
This field also appears only when you select the Enable ADC
start module A check box. Specify the counter match condition
that will trigger an ADC start of conversion event. Choices
are CTR=Zero (the default), CTR=PRD, CTRU=CMPA, CTRD=CMPA,
CTRU=CMPB, and CTRD=CMPB.

Enable ADC start module B
Select to allow ePWMB to trigger ADC start of conversion. This
check box is cleared by default.

Number of event for SOCB to be generated
This field appears only when you select the Enable ADC start
module B check box. Specify how often you want ADC start of
conversion to be triggered. First event triggers ADC start of
conversion with every event, Second event triggers ADC start
of conversion with every second event, and Third event triggers
ADC start of conversion with every third event.

Module B counter match event condition
This field also appears only when you select the Enable ADC
start module B check box. Specify the counter match condition
that will trigger an ADC start of conversion event. Choices
are CTR=Zero (the default), CTR=PRD, CTRU=CMPA, CTRD=CMPA,
CTRU=CMPB, and CTRD=CMPB.

PWM chopper control pane

The PWM chopper control pane lets you specify parameters for
the PWM-Chopper (PC) submodule. The PC submodule allows

a high-frequency carrier signal to modulate the PWM waveform
generated by the AQ and DB modules.

4-75

C280x ePWM

[Z1Block Parameters: ePWM |

’7C2BDH Pt [mask] [link]

Configures the Event Manager of the C280x DSP to generate eFwh waveformes.

General I eP'whA output I eP'wMB output I Deadband unit | ADC control | FWM chopper control | Trip Zome unit I

Chopper frequency divider:l 1 j
Chopper clock cycles width of first pulse: | 1 j
Chopper pulse duty c:ycle:l 125% :l

ok I Cancel | Help | Apply |

Chopper module enable
Select to enable the chopper module. Use of the chopper module is
optional, so this check box is cleared by default.

Chopper frequency divider
Chopper frequency divider is a prescaler that is used to set
the frequency of the chopper clock. The system clock speed is
divided by this value to determine the chopper clock frequency.
Choose an integer value from 1 to8.

4-76

C280x ePWM

Chopper clock cycles width of first pulse
Choose an integer value from 1 to 16 to set the width of the first
pulse. Use this feature to provide a high-energy first pulse to
ensure hard and fast power switch turnon.

Chopper pulse duty cycle
The duty cycles of the second and subsequent pulses are also
programmable. Choices are 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,
and 87.5%.

Trip Zone unit pane

The Trip Zone unit pane lets you specify parameters for the Trip-zone
(TZ) submodule. Each ePWM module is connected to six TZ signals
(TZ1 to TZ6) that are sourced from the GPIO MUX. These signals
indicate external fault or trip conditions. Use the settings in this pane
to program the EPWM outputs to respond when faults occur.

4-77

C280x ePWM

[Z1Block Parameters: ePWM

Configures the Event Manager of the C280x DSP to generate eFwh waveformes.

’7C2BDH Pt [mask] [link]

General I ePwhd output I ePw/MB output

Deadband unit | ADC contral Pt chopper control

iTrip Zone unit

Trip zone snurce:l Specify via dialog
[~ Enable One-Shat TZ1
[~ Enable One-Shot TZ2
[~ Enable One-Shot TZ3
[~ Enable One-Shaot TZ4
[~ Enable One-Shot TZ25
[~ Enable One-Shot TZE
[~ Enable Cyclic T21

[~ Enable Cyclic TZ2

[~ Enable Cyclic TZ3

[~ Enable Cyclic TZ4

[~ Enable Cyclic TZ5

[~ Enable Cyclic TZ6

et 14 forced to:l Mo action

eF'wM1E forced to:l Mo action

[o |

Cancel Help | Apply |

Trip zone source

4-78

Specifies the source from which the control logic is to be obtained.
Choose Specify via dialog (the default) to explicitly enable
Trip-zone signals, or Input port to use information from the
input port.

C280x ePWM

See Also

Enable One-Shot TZ1

Enable One-Shot TZ2

Enable One-Shot TZ3

Enable One-Shot TZ4

Enable One-Shot TZ5

Enable One-Shot TZ6
Select any of these check boxes to enable the corresponding
Trip-zone signal in One-Shot Mode. In this mode, when the trip
event is active, the respective action on the EPWMxA/B output
is carried out immediately and is latched. The condition remains
latched and can only be cleared by the user under software control.

Enable Cyclic TZ1

Enable Cyclic TZ2

Enable Cyclic TZ3

Enable Cyclic TZ4

Enable Cyclic TZ5

Enable Cyclic TZ6
Select any of these check boxes to enable the corresponding
Trip-zone signal in Cycle-by-Cycle Mode. In this mode,
when the trip event is active, the respective action on the
EPWMxA/B output is carried out immediately and is latched. In
Cycle-by-Cycle Mode, the condition is automatically cleared when
the PWM Counter reaches zero. Therefore, in Cycle-by-Cycle
Mode, the trip event is cleared or reset every PWM cycle.

ePWMxA forced to

ePWMxB forced to
Upon a fault condition, the ePWMxA and/or ePWMxB output can
be overridden and forced to one of the following: No action (the
default), High, Low, or Hi-Z(High Impedance).

C280x ADC

4-79

C280x eQEP

4-80

Purpose
Library

Description

GRS

qpossnt

2QEFR

eQEF

Dialog
Box

Quadrature encoder pulse circuit

c280xdspchiplib in Embedded Target for TI C2000 DSP

The enhanced quadrature encoder pulse (eQEP) module is used for
direct interface with a linear or rotary incremental encoder to get

position, direction, and speed information from a rotating machine for
use in a high-performance motion and position-control system.

General pane

[Z]source Block Parameters: eQEP

x|

C280= elEP [mask] (link]

The enhanced quadrature encoder pulse [eQEF] module is used for direct interface with a linear ar rakary incremental

encoder to get pozition, direction, and speed infarmation fram a ratating machine for uze in a high-perfarmance
mation and position-contral systemn.

The eQEP inputs include bwo ping for guadrature-clock mode or direction-count mode, an index [or O mrker], and a
strobe input.

IF'osition counter I Speed calculation Compare output | *watchdog unit I Signal data tvpes I

Madule: | eGEFT

Fosition counter mode:l Quadrature-count

Poszitive lotation:l Clockwize

[~ Quadrature phase emor flag output port
[~ Quadrature direction flag output port
[Irvert input DEP=2, polarity

[~ Irwert input QEP=E palarity

[Invert input QEPs polarity

[~ Irwert input QEP=S palarity

[~ Index pulse gating option

Sample time;

Lol Lef L]

{0000

QK I Cancel Help

C280x eQEP

Module
As many as two eQEP units are allowed on a single C280x-based
board. Choose eQEP1 (the default) or eQEP2.

Position counter mode
The input signals QEPA and QEPB are processed by the
Quadrature Decoder Unit (QDU) to produce clock (QCLK) and
direction (QDIR) signals. Choose the position counter mode
appropriate to the way the input to the eQEP module is encoded.
Choices are Quadrature-count (the default), Direction-count,
Up-count, and Down-count.

Positive rotation
This field appears only when you choose Quadrature-count in
Position counter mode. Choose the direction that represents
positive rotation: Clockwise (the default) or Counterclockwise.

External clock rate
This field appears only when you choose Direction-count,
Up-count, or Down-count in Position counter mode. In these
cases, you can program clock generation to the position counter to
occur on both rising and falling edges of the QEPA input or on the
rising edge only. The effect of choosing the former is increasing
the measurement resolution by a factor of 2. Choices are 2x
resolution: Count the rising/falling edge (the default) or
1x resolution: Count the rising edge only.

Quadrature phase error flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
generate an interrupt when the QEPA and QEPB signals fall out
of their normal state of being 90 degrees out of phase.

Quadrature direction flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
generate an interrupt when the direction of counting is reversed
by swapping the QEPA and QEPB input signals.

4-81

C280x eQEP

4-82

Invert input QEPxA polarity

Invert input QEPxB polarity

Invert input QEPXI polarity

Invert input QEPxS polarity
Select any of these check boxes to invert the polarity of the
respective eQEP input signal.

Index pulse gating option
Select this check box to enable gating of the index pulse.

Sample time
Enter the sample time in seconds.

C280x eQEP

Position counter pane

E! Source Block Parameters: eQJEP |

C280% eQEF [mask] [link]

The enhanced quadrature encoder pulse [eQEF) module is used for direct interface with a linear or rotary incremental
encoder to get position, direction, and speed infarmation from a ratating machine for uze in a high-perfarmance
mation and position-cantral system.

The eQEF inputs inchude bwao ping for quadrature-clock. mode or direction-count mode, an index [or O mrker], and a
strobe input.

General | Speed calculation I Compare output | watchdog unit I Signal data types I

v Output position courter

M amimum position counter value [0~4234367295];
4294957295

[~ Enable set to init value on index event
[~ Enable set to init value on strobe event

[~ Enable softvare initislization

Pozition counter reset mode: | Reset on an index exvent v|

[~ Dutput pozition counter eror flag

Output position counter
This check box is selected by default. Leave it selected to output
the position counter signal PCSOUT from the position counter
and control unit (PCCU).

Maximum position counter value
Enter a maximum value for the position counter. Enter a value
from 0 to 4294967295. The default is the maximum allowed value
of 4294967295.

4-83

C280x eQEP

4-84

Enable set to init value on index event
Select to set the position counter to its initialization value on an
index event. This check box is cleared by default.

Set to init value on index event
This field appears only when Enable set to init value on
index event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the index input.

Enable set to init value on strobe event
Select to set the position counter to its initialization value on a
strobe event. This check box is cleared by default.

Set to init value on strobe event
This field appears only when Enable set to init value on
strobe event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the strobe input.

Enable software initialization
Select to allow the position counter to be set to its initialization
value via software. This check box is cleared by default.

Software initialization source
This field appears only when Enable software initialization is
selected. Choose Set to init value at start up (the default)
or Input port to receive the control logic through the input port.

Initialization value
This field appears only when Enable set to init value on
index event, Enable set to init value on strobe event, or
Enable software initialization check box is selected. Enter the
initialization value for the position counter. Enter a value from 0
to 4294967295. The default is 2147483648.

Position counter reset mode
Choose a position counter reset mode, depending on the nature
of the system the eQEP module is working with: Reset on an
index event (the default), Reset on the maximum position,

C280x eQEP

Reset on the first index event, or Reset on a time unit
event.

Output position counter error flag
This check box appears only when Position counter reset mode
is set to Reset on an index event. Select this check box to
output the position counter error flag on error.

Output latch position counter on index event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP index input can be configured
to latch the position counter (QPOSCNT) into QPOSILAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each index event.

Index event latch of position counter
This field appears only when the Qutput latch position
counter on index event check box is selected. Choose one of the
following events to configure the eQEP position counter to latch
on that event: Rising edge, Falling edge, or Software index
marker via input port.

Output latch position counter on strobe event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP strobe input can be configured
to latch the position counter (QPOSCNT) into QPOSSLAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each strobe event.

Strobe event of latched position counter
This field appears only when the Qutput latch position counter
on strobe event check box is selected. Choose Rising edge to
latch on the rising edge of the strobe event input, or Depending
on direction to latch on the rising edge in the forward direction
and the falling edge in the reverse direction.

4-85

C280x eQEP
|

Speed calculation pane

E! Source Block Parameters: eQJEP |

C280% eQEF [mask] [link]

The enhanced quadrature encoder pulse [eQEF) module is used for direct interface with a linear or rotary incremental
encoder to get position, direction, and speed infarmation from a ratating machine for uze in a high-perfarmance
mation and position-cantral system.

The eQEP inputs inchude bwao ping for quadrature-clock. mode or direction-count mode, an index [or O rmrker], and a
strobe input.

General I Pazition counter
[v Enable eDEP capture
[~ Output capture timer

Compare output | watchdog unit I Signal data types I

[~ Dutput capture penod tirmes

elJEF capture timer prescaler:l 128 :I
Unit position event prescaler:l 128 :I
[~ Enable and output overflow emar flag

[~ Enable and output direction change emor flag

Capture timer and pogition: | On pozition counter read j

[~ Dutput capture timer latched value
[~ Dutput capture timer period latched svalue

[~ Output pozition counter latched value

ok I Cancel Help

Enable QEP capture
The eQEP peripheral includes an integrated edge capture unit
to measure the elapsed time between the unit position events.
Check this check box to enable the edge capture unit. This check
box is cleared by default.

Output capture timer
Select this check box to output the capture timer into the capture
period register. This check box is cleared by default.

4-86

C280x eQEP

Output capture period timer
Select this check box to output the capture period into the capture
period register. This check box is cleared by default.

eQEP capture timer prescaler
The eQEP capture timer runs from prescaled SYSCLKOUT. The
capture timer period is the value of SYSCLKOUT divided by
the value you choose in this field. Choices are 1, 2, 4, 8, 16, 32,
64, and 128 (the default).

Unit position event prescaler
The timing of the unit position event is determined by prescaling
the quadrature-clock (QCLK). QCLK is divided by the value you
choose in this popup. Choices are 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 2048 (the default).

Enable and output overflow error flag
Select this check box to enable and output the eQEP overflow
error flag in the event of capture timer overflow between unit
position events.

Enable and output direction change error flag
Select this check box to enable and output the direction change
error flag.

Capture timer and position
Choose the event that triggers the latching of the capture timer
and capture period register: On position counter read (the
default) or On unit time-out event.

Unit timer period
This field appears only when you choose On unit time-out
event in Capture timer and position. Enter a value for the
unit timer period from 0 to 4294967295. The default is 100000000.

Output capture timer latched value
Select this check box to output the capture timer latched value
from the QCTMRLAT register.

4-87

C280x eQEP

4-88

Output capture timer period latched value
Select this check box to output the capture timer period latched
value from the QCPRDLAT register.

Output position counter latched value

Select this check box to output the position counter latched value
from the QPOSLAT register.

Compare output pane

[Z]source Block Parameters: eDEP
C280% eQEF [mask] [link]

X

The enhanced quadrature encoder pulse [eQEF) module is used for direct interface with a linear or rotary incremental

encoder to get position, direction, and speed infarmation from a ratating machine for uze in a high-perfarmance
mation and position-cantral system.

The eQEP inputs inchude bwao ping for quadrature-clock. mode or direction-count mode, an index [or O rmrker], and a

strobe input.

General I Poszition counter I Speed calculation

‘watchdog unit I Signal data types
[v Enable position-compare sync signal output

Sync output pin selection:l Index pin iz uzed for spnc output

Compare value snurce:l Specify via dialog

Pozition compare shadow load mnde:l Load on QPOSCHNT=0
Poszition compare walue [0™4234967295]:

Lel Lef Lo

|4234967295
Sync output pulze width [1~4098]):

|1

Polarity of spnc Dutput:l Active high

ok I Cancel Help

C280x eQEP

Enable position-compare sync signal output
The eQEP peripheral includes a position-compare unit that is
used to generate the position-compare sync signal on compare
match between the position counter register (QPOSCNT) and the
position-compare register (QPOSCMP). Select this check box to
enable the position-compare sync signal output. This check box is
cleared by default.

Sync output pin selection
Choose which pin is used for the sync signal output. Choices are
Index pin is used for sync output (the default) and Strobe
pin is used for sync output.

Compare value source
Choose the source of the value to use in the position comparison.
Choose Specify via dialog (the default) to specify a fixed value
or Input port to read the value from the input port.

Position compare shadow load mode
This field lets you enable or disable shadow mode for use in
generating the position-compare sync signal (shadow mode is
enabled by default). When shadow mode is enabled, you can also
choose an event to trigger the loading of the shadow register value
into the active register.

Choose Disable shadow mode to disable shadow mode. Choose
Load on QPOSCNT=0 (the default) to load on the position-counter
zero event. Choose Load on QPOSCNT=QPOSCMP to load on compare
match.

Position compare value
This field appears only when you choose Specify via dialog in
Compare value source. Enter a value from 0 to 4294967295.
The default is 4294967295. This value is loaded into the
position-compare register (QPOSCMP).

4-89

C280x eQEP

4-90

Sync output pulse width
The pulse stretcher logic in the position-compare unit generates
a programmable position-compare sync pulse output on the
position-compare match.

Enter a value from 1 to 4096 to determine the pulse width of the
position-compare sync output signal. The default is 1.

Polarity of sync output
Choose a value to determine the polarity of the sync output signal:
Active high (the default) or Active low.

C280x eQEP

Watchdog unit pane

E! Source Block Parameters: eQJEP |

C280% eQEF [mask] [link]

The enhanced quadrature encoder pulse [eQEF) module is used for direct interface with a linear or rotary incremental
encoder to get position, direction, and speed infarmation from a ratating machine for uze in a high-perfarmance
mation and position-cantral system.

The eQEF inputs inchude bwao ping for quadrature-clock. mode or direction-count mode, an index [or O mrker], and a
strobe input.

General I Poszition counter I Speed calculation Compare output Signal data types I

[v Enable watchdog time out flag via output port

W atchdog timer (0~EB535);
| 55535

ok I Cancel Help

Enable watchdog time out flag via output port
The eQEP peripheral contains a watchdog timer that monitors the
quadrature-clock to indicate proper operation of the motion-control
system. Select this check box to enable the watchdog time out flag.

Watchdog timer
Enter the time-out value for the watchdog timer. Enter a value
from 0 to 65535 (the default).

4-91

C280x eQEP

4-92

Signal data types pane
x

C280= elEP [mask] (link]

The enhanced quadrature encoder pulse [eQEF] module is used for direct interface with a linear or ratary incremental
encoder to get pozition, direction, and speed infarmation fram a ratating maching for use in a high-performarce
mation and position-contral systemn.

The eQEP inputs include hwo pins for quadrature-tgck mode or direction-count mode, an index [or 0 mrker), and a
strobe input.

General Puazitioh counter I Speed calculation I Compare autput

Fogition counter value data t_l,lpe:l auto

QK I Cancel | Help

The image above shows the default condition of the Signal data types
pane. Choosing any of a number of options in other panes of the C280x
eQEP dialog box causes a corresponding popup to appear in the Signal
data types pane.

The following table summarizes the options for which you can set the
data type in the Signal data types pane:

C280x eQEP

Pane Option

General Quadrature phase error flag output port
Quadrature direction flag output port

Position Output position counter (selected by default)

Coputel Output position counter error flag

Output latch position counter on index event

Output latch position counter on strobe event

Speed Output capture timer

e Output capture period timer

Enable and output overflow error flag

Enable and output direction change error flag

Output capture timer latched value

Output capture timer period latched value

Output position counter latched value

Watchdog unit Enable watchdog time out flag via output port

The fields that appear on the Signal data types pane are named
similarly to these options. For example, Position counter value
data type on the Signal data types pane corresponds to the Qutput
position counter option on the Position counter pane.

For all data type fields, valid data types are auto, double, single, int8,
uint8, int16, uint16, int32, uint32, and boolean.

4-93

C280x Hardware Interrupt

4-94

Purpose
Library

Description

GEED
|RCeh

Hamwere Intemipt
Ham™wame Intempt

Create an Interrupt Service Routine to handle hardware interrupts
c280xdspchiplib in Embedded Target for TI C2000 DSP

For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C280x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered
by events managed by other blocks in the C280x DSP Chip Support
Library.

The C280x blocks that can generate an interrupt for asynchronous
processing are

e (C280x ADC

® (C280x eCAN Receive

Vectorized Output

The output of this block includes a set of four vectors of equal length.
One interrupt is represented by four elements, one from the same
position in each of these vectors.

Each of the four text boxes in the dialog box for this block represents
one of these vectors. The four vectors contain

¢ CPU interrupt numbers

¢ PIE interrupt numbers

® Task priorities

® Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following

C280x Hardware Interrupt

table maps CPU and PIE interrupt numbers to these peripheral
interrupts.

4-95

C280x Hardware Interrupt

paniasay paniasay paniasay paniasay paniasey paniasay paniasay paniasay cl
paniasey paniasay paniasay paniasay paniasey paniasey paniasay paniasay H
paniasay paniasay paniasay paniasay paniasey paniasey paniasay paniasay o1
(v-10S) (v-10S) (g-103) (g-103) (V-NVD) (V-NVD) (a-NvD) (a-NvD) 6
VLNIXHIOS VLNIXLIOS g1NIXHIOS GLNIXLIOS VLNIONVO3 VLINIENVO3 | 9LNIONVO3 | 91INIENVO3
(v-021) (v-021)
VZL1NIDZI Y ILNIDOZI paniasay paniasay paniasey paniasay paniasay paniasay 8
paniasey paniasay paniasay paniasay paniasey paniasey paniasay paniasay L
(v-1dS) (v-1dS) (g-1ds) (g-1ds) (O-1dS) (0-1dS) (a@-1ds) (a@-1ds) 9
VLNIXHIdS VLNIXLIdS gLNIXHIdS gLNIXL1IdS OLNIXHIdS OLNIXLIdS ALNIXHIdS | QLNIXLlldS
(1d309) (zd309)
INI 14303 INI 2d3o3a paniasay paniasey paniasey paniasay paniasey paniasay g
(1dv0®) (2dv0?) (edv0?) (ydvO®) b
AINIT1dVO3 INI"2dvo3 AINI"edVO3 AINI"vdvO3 peAiesey peAiesey peAlesey peAiesey
(LAMd®) (znmde) (ENMd®) (YINMd®) (SINMd®) (9nmde) e
AINITHAMJS AINIT2AMd3 AINITENMdT AINITYAMdT AINITSWMd3 AINIT9NMdT peAlesey peAiesey
(LAMd®) (2nmde) (ENMd®) (YINMd®) (SINMd®) (9nmde) z
AINIZL HANMAI | LNIZL 2AMdT | LNIZL SAMd3T | INIZL PINMdT | LNIZL SIWMJ3T | LNIZL 9NMdT | penlesey peAiesey
(oav) (oav) (oav) (0 Y3aNIL) (@ammd .
INILO3S 1INIZO3S peAiesey FLNIX ZLNIX AINIDaV OLNIL AINIIMVM
L c € v] 9 YA 8
SO9N|PA J|d = SJ9QUINU UWIN|O) / SINIPA NdD = SIdqUINU MOY
SaN|PA
10p3A dnaasyu pasydiad x08ZD %
[]
<

C280x Hardware Interrupt

Dialog
Box

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. Note that
the default priority value of the base rate task is 40, so the priority value
for each asynchronously triggered task must be less than 40 in order for
these tasks to actually cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

E Source Block Parameters: Hardware Ink x|

—Hardwsare Intermupt [maszk] (link]

Create Interupt Service Routing which will execute the downstrean
subsystemn.

—Parameters

CPU interrupt number();

PIE interupt number(z):
j141]

Simulink, task prionty(s):
jl3033]

Preenption flaglz]: preemptable-1, non-preemptable-0
[[01]

[~ Manage own timer

[~ Enable simulation input:

ok I Cancel | Help |

CPU interrupt number(s)
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

4-97

C280x Hardware Interrupt

4-98

See the table of C280x Peripheral Interrupt Vector Values on page
4-96 for a mapping of CPU interrupt number to interrupt names.

PIE interrupt number(s)
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C280x Peripheral Interrupt Vector Values on page
4-96 for a mapping of CPU interrupt number to interrupt names.

Simulink task priority(s)
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 4-94
for an explanation of task priorities.

Preemption flag(s)
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 4-94
for an explanation of preemption flags.

Manage own timer
Some Simulink blocks need to keep track of time in order to
function properly. Select this check box if your model contains
such a block in the downstream subsystem.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

C280x Hardware Interrupt
|

References Detailed information interrupt processing is in the TMS320x280x DSP
System Control and Interrupts Reference Guide, Literature Number
SPRU712B, available at the Texas Instruments Web site.

See Also Idle Task

4-99

C281x ADC

Purpose

Library

Description

AL

CEEx
A

4-100

ADG

Analog-to-digital converter (ADC)
c281xdspchiplib in Embedded Target for TI C2000 DSP

The C281x ADC block configures the C281x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Triggering

The C281x ADC trigger mode depends on the internal setting of the
Source Start-of-Conversion (SOC) signal. The ADC is usually triggered
by software at the sample time intervals specified in the ADC block

— this is unsynchronized mode.

In synchronized mode, the Event (EV) Manager associated with the
same module as the ADC triggers the ADC. In this case, the ADC
is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal
setting. The ADC Start Event is set in the C281x PWM block. See
that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

Output

The output of the C281x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C281x ADC is 12-bit
converter.

C281x ADC

Dialog
Box

Modes

The C281x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

ADC Control pane

E Source Block Parameters: ADC x|

|7C28:4 ADC [maszk] (link)

Configures the ADC to output & constant ztream of data collected
from the ADC ping on the c28% DSP,

Module:l b j
Conversion mnde:l Seguential j
Start of conversion:l Software j
Sample time:

oo

Data t_l,lpe:l uint1B j

[~ Post interupt at the end of conversion

ok I Cancel | Help |

Module
Specifies which DSP module to use:

® A — Displays the ADC channels in module A (ADCINAO
through ADCINAT7).

® B — Displays the ADC channels in module B (ADCINBO
through ADCINB7).

4-101

C281x ADC

®* A and B — Displays the ADC channels in both modules A
and B (ADCINAO through ADCINA7 and ADCINBO through
ADCINB7)

Then, use the check boxes to select the desired ADC channels.

Conversion mode
Type of sampling to use for the signals:

® Sequential — Samples the selected channels sequentially

® Simultaneous — Samples the corresponding channels of
modules A and B at the same time

Start of conversion
Type of signal that triggers conversions to begin:

e Software — Signal from software

® EVA — Signal from Event Manager A

® EVB — Signal from Event Manager B

® External — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-11 for more information on timing.

To set different sample times for different groups of ADC channels,
you must add separate C281x ADC blocks to your model and set
the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

4-102

C281x ADC

Post interrupt at the end of conversion
Check this check box to post an asynchronous interrupt at the
end of each conversion. Note that the interrupt is always posted
at the end of conversion.

Input Channels pane

E Source Block Parameters: C28% ADC x|

C28% ADC [maszk] (link]

Configures the ADC to output a constant stream of data collected
fram the ADC ping on th c28% DSP.

ADC Control | | |

Murmnber of cnnversions:l 1

Ll Lef

Conversion no. 1 I ADCIMAD

I~ Use multiple autput ports

0K I Cancel | Help |

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

4-103

C281x ADC

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also C281x PWM, C281x Hardware Interrupt

4-104

C281x CAP

Purpose

Library

Description

CAP

CEEx

ont

CGAF

Receive and log capture input pin transitions
c281xdspchiplib in Embedded Target for TI C2000 DSP

The C281x CAP block sets parameters for the capture units (CAPs)
of the event manager (EV) module. The capture units log transitions
detected on the capture unit pins by recording the times of these
transitions into a two-level-deep FIFO stack. The capture unit pins
can be set to detect rising edge, falling edge, either type of transition,
or no transition.

The C281x chip has six capture units — three associated with each
EV module. Capture units 1, 2, and 3 are associated with EVA and
capture units 4, 5, and 6 are associated with EVB. Each capture unit is
associated with a capture input pin.

Note You can have up to two C281x CAP blocks in any one model —
one block for each EV module.

Each group of EV module capture units can use one of two
general-purpose (GP) timers on the target board. EVA capture units
can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4.
When a transition occurs, the value of the selected timer is stored in the
two-level deep FIFO stack.

Outputs

This block has up to two outputs: a cnt (count) output and an optional,
FIFO status flag output. The cnt output increments each time a
transition of the selected type occurs. The status flag outputs are

® 0 — The FIFO is empty. Either no captures have occurred or the
previously stored capture(s) have been read from the stack. (The
binary version of this flag is 00.)

¢ 1 — The FIFO has one entry in the top register of the stack. (The
binary version of this flag is 01.)

4-105

C281x CAP

¢ 2 — The FIFO has two entries in the stack registers. (The binary
version of this flag is 10.)

e 3 — The FIFO has two entries in the stack registers and one or more
captured values have been lost. This occurs because another capture
occurred before the FIFO stack was read. The new value is placed in
the bottom register. The bottom register value is pushed to the top of
the stack and the top value is pushed out of the stack. (The binary
version of this flag is 11.)

Dialog Data Format pane

Box
E! Source Block Parameters: C28x CAP |

C28x CAF [maszk] [link)
’7 Configures the Event Manager of the C28% DSP for CAP [capture].

DataFomat | caP1 | capz | caps |

Wociie: [T -

[~ Output overun status flag

Output data format; I Send 2 elements [FIFO Buffer] j
Sample time;
0.0
Data bype: | auto ﬂ
0K LCancel | Help |
Module

Select the event manager (EV) module to use:
e A— Use CAPs 1, 2, and 3.
e B— Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data
type of the status flag is uint16.

4-106

C281x CAP

Send data format
The type of data to output:

® Send 2 elements (FIFO Buffer) — Sends the latest two
values. The output is updated when there are two elements
in the FIFO, which is indicated by bit 13 or 11 or 9 being
sent (CAP x FIFO). If the CAP is polled when fewer than two
elements are captures, old values are repeated. The CAP
registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output
at index 0.

¢ The new top value of the FIFO (the previously stored bottom
stack value) is read and stored in the output at index 1.

® Send 1 element (oldest) — Sends the older of the two most
recent values. The output is updated when there is at least
one element in the FIFO, which is indicated by any of the bits
13:12, or 11:10, or 9:8 being sent. The CAP registers are read
as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output.

® Send 1 element (latest) — Sends the most recent value.
The output is updated when there is at least one element in the
FIFO, which is indicated by any of the bits 13:12, or 11:10, or
9:8 being sent. The CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b If there are two entries in the FIFO, the bottom value is read
and stored in the output. If there is only one entry in the
FIFO, the top value is read and stored in the output.

4-107

C281x CAP
|

Sample time

Time between outputs from the FIFO. If new data is not available,
the previous data is sent.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.
The auto option uses the data type of a connected block that

outputs data to this block. If this block does not receive any input,
auto sets the data type to double.

CAP# pane

x
’7C28:4 CAP [mazk)

Configures the Event Manager of the C28% DSF for CAP [capture].

Data Format | iC

: II:APz | cers |
[+ Enahble CARP1

Edge delection:l Rizing Edge

Time base:l Tirmer 1

Scaling: I Maone

Lel Lef Lo

[~ Post interupt an CAP1

ok I Cancel Help

The CAP# panes set parameters for individual CAPs. The particular
CAP affected by a CAP# pane depends on the EV module you selected:

e CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.
e CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.
e CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

4-108

C281x CAP

Enable CAP#

Select to use the specified capture unit pin.

Edge Detection

Type of transition detection to use for this CAP. Available types are
Rising Edge, Falling Edge, Both Edges, and No transition.

Time Base

The target board GP timer to use. CAPs 1, 2, and 3 can use
Timer 1 or Timer 2. CAPs 4, 5, and 6 can use Timer 3 or

Timer 4.

Scaling

Clock divider factor by which to prescale the selected GP timer
to produce the desired timer counting rate. Available options are
none, 1/2,1/4,1/8,1/16,1/32, 1/64, and 1/128. The resulting
rate for each option is shown below.

Scaling Resulting Rate (ps)
none 0.01334
1/2 0.02668
1/4 0.05336
1/8 0.10672
1/16 0.21344
1/32 0.42688
1/64 0.85376
1/128 1.70752

Note The above rates assume a 75 MHz input clock.

Post interrupt on CAP#

Check this check box to post an asynchronous interrupt on CAP#.

4-109

C281x CAP

See Also

C281x Hardware Interrupt

4-110

C281x eCAN Receive

Purpose
Library

Description
8281%

=g

eCAN RCW
eCAN Receive

Enhanced Control Area Network receive mailbox
c281xdspchiplib in Embedded Target for TI C2000 DSP

The C281x enhanced Control Area Network (eCAN) Receive block
generates source code for receiving eCAN messages through an

eCAN mailbox. The eCAN module on the DSP chip provides serial
communication capability and has 32 mailboxes configurable for receive
or transmit. The C281x supports eCAN data frames in standard or
extended format.

The C281x eCAN Receive block has up to two and, optionally, three
output ports.

® The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

® The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is always 8 bytes.

® The third output port is optional and appears only if Output
message length is selected.

4-111

C281x eCAN Receive

(]
Dialog 5I

Box —C28x eCAN Receive [mask)

Configures an eCaM mailbox to receive meszages from the eCAN bug ping on the
c28x DSP. When the message is received, emits the function call to the connected
function-call subzyztemn az well az outputs the meszage data in selected format and
the meszage data length in butes,

—Parameters

t ailbox number:

0]

teszage identifier;
Ibin2dec["| 110001117

teszage type:l Standard [11-hit identifier) LI
Sample time:

1

Drata type:l uint16 LI

[~ Output message lenagth

[~ Post intermupt when meszage is received

ok I Cancel Help

Mailbox number
Unique number between 0 and 15 for standard or between 0 and
31 for enhanced CAN mode. It refers to a mailbox area in RAM.
In standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a
receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit

identifier).

4-112

C281x eCAN Receive

Sample time

Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function call

to be emitted from the mailbox.

Data type

Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[O0]
Output[i1] =
Output[2]
Output[3] =

For uint32 data,

Output[O0]
Output[1] =

For example, if the received message has two bytes:

data_buffer]
data_buffer]

data buffer[1.
data buffer[3.
data buffer[5.
data buffer[7.

data buffer[3..
data_ buffer[7..

0]
1]

0x21
0x43

then the uint16 output would be:

Output[O0]
Output[1]
Output[2]
Output[3]

0x4321
0x0000
0x0000
0x0000

.01;
.2];
.41;
.61;

013
413

4-113

C281x eCAN Receive

References

See Also

4-114

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Check this check box to post an asynchronous interrupt when a
message is received.

Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature
Number SPRU074A, available at the Texas Instruments Web site.

C281x eCAN Transmit, C281x Hardware Interrupt

C281x eCAN Transmit

Purpose

Library

Description

=g

C281x

eCAN SMT

eCAN Transmit

Enhanced Control Area Network transmit mailbox
c281xdspchiplib in Embedded Target for TI C2000 DSP

The C281x enhanced Control Area Network (eCAN) Transmit block
generates source code for transmitting eCAN messages through an
eCAN mailbox. The eCAN module on the DSP chip provides serial
communication capability and has 32 mailboxes configurable for receive
or transmit. The C28x supports eCAN data frames in standard or
extended format.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

4-115

C281x eCAN Transmit

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

4-116

C281x eCAN Transmit

Dialog
Box

[=]sink Block Parameters: C28x eCAN Transmit |

—LC28% eCAM Tranzmit [mask)] [link]

Configures an eCAM mailbox to tranzmit meszage to the CAN buz pins on the c28x

—Parameters
Mailbox number:

Meszage identifier;
|bin2dec['1 110001117

Meszage t_l,lpe:l Standard [11-bit identifier) ;I
[+ Enable blacking made

QK I Cancel | Help | Apply |

Mailbox number
Unique number between 0 and 15 for standard or between 0 and
31 for enhanced CAN mode. It refers to a mailbox area in RAM.
In standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If cleared, the CAN block code does not wait
for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

4-117

C281x eCAN Transmit

References Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature
Number SPRU074A, available at the Texas Instruments Web site.

See Also C281x eCAN Receive

4-118

C281x GPIO Digital Input
|

Purpose General-purpose I/0 pins for digital input
Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that
T control the GPIO shared pins for digital input. Each I/O port has one
MUX register, which is used to select peripheral operation or digital

GPI Dl I/0 operation.
Cigital Input

o
Dialog x

Box —LC28« GPIO Digital Input [mazk] [link]

The digital 1/0 ports module provides a flexible method for controlling both dedicated
1/0 and shared pin functions. All [/0 and shared pin functions are controlled uzsing nine
16-bit registers.

P
I

10 Port: [e=I[arS
v EitD

[~ Bit1

[~ Bit2

[~ Bit3

I~ Eit4

[~ EitS

I~ EitB

[~ Eit7

[~ Bits

[~ Bt

[~ Bit10
[~ Bit11
[~ Bit12
[~ Bit13
[~ Bit14
[~ Bit15
Sample time:
Joom

[iata type: | auta j

Ok I LCancel Help | Lpply |

4-119

C281x GPIO Digital Input

4-120

10 Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable
for digital input. (Note that there is no GPIOPC port on the
C281x.) If you select multiple bits, vector input is expected.
Unselected bits are available for peripheral functionality. Multiple
GPIO DI blocks cannot share the same I/O port.

The following tables show the shared pins.

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral

function cannot be used.

GPIO A MUX
Peripheral Name GPIO Name
Bit (bit =1) (bit = 0)
0 PWM1 GPIOAO
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOAS
4 PWM5 GPIOA4
5 PWM6 GPIOA5
8 QEP1/CAP1 GPIOAS
9 QEP2/CAP2 GPIOA9
10 CAP3 GPIOA10

C281x GPIO Digital Input

GPIO B MUX
Peripheral Name GPIO Name
Bit (bit =1) (bit = 0)
0 PWM7 GPIOBO
1 PWMS8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3/CAP4 GPIOBS
9 QEP4/CAP5 GPIOB9
10 CAP6 GPIOB10

Sample time
Time interval, in seconds, between consecutive input from the

Data type
Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type.
Valid data types are auto, double, single, int8, uint8, int16,
uinti16, int32, uint32 or boolean.

See Also C281x GPIO Digital Output

4-121

C281x GPIO Digital Output

Purpose
Library

Description

GEETx

GRS Do

Cigital Cutput

Dialog
Box

4-122

General-purpose I/0 pins for digital output
c281xdspchiplib in Embedded Target for TI C2000 DSP

This block configures the general-purpose I/0 (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/0 operation.

[Z]Block Parameters: C28xGPID_DO x|

—LC28x GPIO Digital Output [maszk] [link)

The digital 1/0 ports module provides a flexible method for controlling both dedicated
140 and zhared pin functions. Al 1/0 and shared pin functions are controlled uzing nine
16-bit regizters,

—Farameters

10 Part: |{ef=Inr
v BitO
I~ Bit1
I~ Btz
[~ Eitz
[~ Bitd
[~ EitS
[~ EitG
[~ Bit7
[~ Bitg
T
[~ Bit10
[~ Bit11
[~ Bit12
[~ Bit13
[~ Bit14
[~ Bit15

ok I Cancel Help Apply

C281x GPIO Digital Output

I0 Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable
for digital input. (Note that there is no GPIOPC port on the
C281x.) If you select multiple bits, vector input is expected.
Unselected bits are available for peripheral functionality. Note
that multiple GPIO DO blocks cannot share the same I/O port.

The following tables show the shared pins.

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral

function cannot be used.

GPIO A MUX
Peripheral Name GPIO Name
Bit (bit =1) (bit = 0)
0 PWM1 GPIOAO
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOAS
4 PWM5 GPIOA4
5 PWM6 GPIOA5
8 QEP1/CAP1 GPIOAS
9 QEP2/CAP2 GPIOA9
10 CAP3 GPIOA10

4-123

C281x GPIO Digital Output

See Also

4-124

GPIO B MUX
Peripheral Name GPIO Name

Bit (bit =1) (bit = 0)
0 PWM7 GPIOBO
1 PWMS8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3/CAP4 GPIOBS
9 QEP4/CAP5 GPIOB9
10 CAP6 GPIOB10

C281x GPIO Digital Input

C281x Hardware Interrupt

Purpose
Library
Description

GEETx
|RCeh

Hamwere Intemipt
Ham™wame Intempt

Create an Interrupt Service Routine to handle hardware interrupts
c281xdspchiplib in Embedded Target for TI C2000 DSP

For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C281x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered
by events managed by other blocks in the C281x DSP Chip Support
Library.

The C281x blocks that can generate an interrupt for asynchronous
processing are

e (C281x ADC

e (C281x CAP

® (C281x eCAN Receive

e (C281x QEP

® (C281x SCI Receive

® (C281x SCI Transmit

® (C281x SPI Receive

Vectorized Output

The output of this block includes a set of four vectors of equal length.
One interrupt is represented by four elements, one from the same
position in each of these vectors.

Each of the four text boxes in the dialog box for this block represents
one of these vectors. The four vectors contain

¢ CPU interrupt numbers

¢ PIE interrupt numbers

® Task priorities

4-125

C281x Hardware Interrupt

® Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral

interrupts.

4-126

C281x Hardware Interrupt

panlesey panlesey panlesey panlesay panlesay panlesay panlesay peniesed | gL
panlesey panlesay panlesey panlesay panlesay panlesay panlesay paniesed | LI
panlesay panlesey panlesay panlesay panlesay panlesay panlesay paniesed | O
(v-10S) (v-10S) (g-103) (g-103) (NVD) (NVD) 6
VLNIXHIOS | VINIXLIOS [9LNIXHIOS | 9INIXLIOS [LNIONVO3 | LNILNVO3 | peniesey peAiesey
panlesay panlesey panlesey panlesay panlesay panlesay panlesay panlesay 8
panlesey panlesey panlesay panlesay panlesay panlesay panlesay panlesay l
(1ds) (1ds) (dsgon) (dsgon) 9
VLNIXHIdS | VINIXLIdS | pemnesey | paniesey AINIHIN INIXIN peAiesey peAiesey
(a-n3) (a-nA3) (a-n3) (a-nA3) (a-nA3) (a-n3) (a-n3) g
INIdtL AINIOVL INIANYL | INIHO¥YL | ¥INIAVO | SLINIAVO | 9LNIdVO | pensesey
(a-n3) (a-nA3) (a-n3) (a-n3) (a-nA3) (a-nA3) (a-n3) b
INIPAND | LNISAINO | LINI9dWO INIdEL INIOSL INIdNEL | LINIHOEL | penlesey
(v-A3) (v-A3) (v-A3) (v-A3) (v-A3) (v-A3) (v-A3) e
INId2L 1INIOZL INIdNZL | 1NIdOzL FINIAVO | 2LNIdVO | €LNIdVO | penlesey
(v-A3) (v-A3) (v-A3) (v-A3) (v-A3) (v-A3) (v-A3) Z
INILAND | LNIZAND | LINIEdWD INIdIL INIOLL INIdNEL | LINIHOLL | pealesey
(v-A3) (a-nA3) (oav) (0o "awi) | (a@ammdi .
VLNIdad g1NIdad | pensesey FLNIX ZLNIX AINIDaV OLNIL AINIIMVM
I c € v] 9 YA 8

SONIPA J|d = SIAGUINU UWN|O) / SIN|DA NdD = SISqUINU MOY

San|pA 410429/ idniiaju piaydiiad X1 8ZD

4-127

C281x Hardware Interrupt

Dialog
Box

4-128

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. Note that
the default priority value of the base rate task is 40, so the priority value
for each asynchronously triggered task must be less than 40 in order for
these tasks to actually cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

E Source Block Parameters: Hardware Ink x|

—Hardwsare Intermupt [maszk] (link]

Create Interupt Service Routing which will execute the downstrean
subsystemn.

—Parameters

CPU interrupt number();

PIE interupt number(z):

j141]

Simulink, task prionty(s):

jl3033]

Preenption flaglz]: preemptable-1, non-preemptable-0
[0 1]

[~ Manage own timer

[~ Enable simulation input:

ok I Cancel | Help |

CPU interrupt number(s)
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

C281x Hardware Interrupt

See the table of C281x Peripheral Interrupt Vector Values on page
4-127 for a mapping of CPU interrupt number to interrupt names.

PIE interrupt number(s)
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C281x Peripheral Interrupt Vector Values on page
4-127 for a mapping of CPU interrupt number to interrupt names.

Simulink task priority(s)
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
4-125 for an explanation of task priorities.

Preemption flag(s)
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
4-125 for an explanation of preemption flags.

Manage own timer
Some Simulink blocks need to keep track of time in order to
function properly. Select this check box if your model contains
such a block in the downstream subsystem.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

4-129

C281x Hardware Interrupt

References Detailed information interrupt processing is in the TMS320x281x DSP
System Control and Interrupts Reference Guide, Literature Number
SPRUO078C, available at the Texas Instruments Web site.

See Also C281x Timer, Idle Task

4-130

C281x PWM
|

Purpose Pulse wave modulators (PWMs)
Library c281xdspchiplib in Embedded Target for TI C2000 DSP
Description F2812 DSPs include a suite of pulse width modulators (PWMs) used
BT to generate various signals. This block provides options to set the A
or B module Event Managers to generate the waveforms you require.
Bt The twelve PWMs are configured in six pairs, with three pairs in each
Fii module.

Note All inputs to the C281x PWM block must be scalar values.

4-131

C281x PWM

Dialog Timer pane

Box
x

’7E28:4 Pt [rnazk)] [link)

Configures the Event Manager of the C28x DSP to generate P waweforms,

Tirner IDutputs | Logic | Deadband | ADC Control

Module:l A :I

W aveform period source:l Specify via dialog :I

W aveform period;
f L0001

W avefarm lype:l Azymmetric

W aveform period units:l Seconds

0K I Cancel | Help Apply

Module
Specifies which target PWM pairs to use:

® A — Displays the PWMs in module A (PWM1/PWM2,
PWM3/PWM4, and PWM5/PWM6).

® B — Displays the PWMs in module B (PWM7/PWMS,
PWM9/PWM10, and PWM11/PWM12).

4-132

C281x PWM

Note PWMs in module A use Event Manager A, Timer 1, and
PWDMs in module B use Event Manager B, Timer 3.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note “Clock cycles” refers to the high-speed peripheral clock on
the F2812 chip. This clock is 75 MHz by default because the
high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Waveform type
Type of waveform to be generated by the PWM pair. The F2812
PWDMs can generate two types of waveforms: Asymmetric and
Symmetric. The following illustration shows the difference
between the two types of waveforms.

4-133

C281x PWM

Asymmetric warehim
Waveform

K
metric m'*‘

aveform

Waveform period units
Units in which to measure the waveform period. Options are
Clock cycles, which refer to the high-speed peripheral clock on
the F2812 chip (75 MHz), or Seconds. Note that changing these
units changes the Waveform period value and the Duty cycle
value and Duty cycle units selection.

4-134

C281x PWM

Outputs pane

E! Block Parameters: C28x PWM x|

Caonfigures the Event kanager of the C28x DSP to generate P waveforms.

’—E28>: Pt mask] [link]

Timer |

v Enable kil /P2

ILngic | [eadband |.-’-‘«DC Control |

Dty cycle source:l Specify via dialog

Dty cycle:

|50
¥ Enable Pu/M /P4

Dty cycle source: | Specify via dialog

Dty cycle:

|50
¥ Enable Pu/M5/PwME

Dty cycle source:l Specify via dialog

Dty cycle:

50

Doty cycle units:l Percentages

(o |

Cancel

| Help | Apply |

Enable PWM#/PWM#

Check to activate the PWM pair. PWM1/PWM2 are activated
via the Output 1 pane, PWM3/PWM4 are on Output 2, and
PWM5/PWM6 are on Output 3.

Duty cycle source

Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
cycle or select Input port to use a value from the input port.

4-135

C281x PWM

Duty cycle
Ratio of the PWM waveform pulse duration to the PWM waveform
period expressed in Duty cycle units.

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and
Percentages. Note that changing these units changes the Duty
cycle value, and the Waveform period value and Waveform
period units selection.

Logic pane

E Block Parameters: C28% PWM x|

’7C28:4 Pt [mask] [link]

Configures the Event Manager of the C28% DSP to generate P waveforms.

Tirner I Outputs

| Deadhand | ADC Contral

Contral logic snurce:l Specify via dialog

Fibd1 control Iogic:l Active high

Fbd 2 control Iogic:l Active low

Fibd 3 control Iogic:l Active high

Fibdd control Iogic:l Active low

Fitd5 control Iogic:l Active high

Ll Lef L L] L] L] L

F'tE control Iogic:l Active low

ok I Cancel Help Apply

4-136

C281x PWM

Control logic source

Source from which the control logic is obtained for all PWMs.

Select Specify via dialog to enter the values in the PWM#

control logic fields or select Input port to use values from the
input port.

PWM# control logic

Control logic trigger for the PWM. Forced high causes the pulse

value to be high. Active high causes the pulse value to go from
low to high and Active low causes the pulse value to go from
high to low. Forced low causes the pulse value to be low.

Deadband pane

E! Block Parameters: C28x PWM

x|
’4:28;-: Pt mask] [link]

Caonfigures the Event kanager of the C28x DSP to generate P waveforms.

Timer | Outputs | Logic |D d I.&DC Control |
[~ Use deadband for P/ 1P 2

[~ Use deadband for P/ 3P4
[~ Use deadband for Py S PwME

[eadband plescaler:l 1

[eadband period source:l Specify via dialog

KAARAFET

[eadband period:l 1

0k I Cancel Help

Apply

4-137

C281x PWM

Use deadband for PWM#/PWM#
Enables a deadband area of no signal overlap at the beginning
of particular PWM pair signals. The following figure shows the
deadband area.

PWM acfive high

|
|
|
|
|
|
Da:ldhund_-..l
|

PWM active bw

Deadband prescaler
Number of clock cycles, which, when multiplied by the Deadband
period, determines the size of the deadband. Selectable values
are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which the deadband period is obtained. Select
Specify via dialog to enter the values in the Deadband
period field or select Input port to use a value, in clock cycles,
from the input port.

Deadband period
Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from
1 to 15.

4-138

C281x PWM

ADC Control pane
x

’7C28:4 Pt [mask] [link]

Configures the Event Manager of the C28% DSP to generate P waveforms.

ADC gtart eventl MHone j

Tirmer I Outpuits I Laogic I Deadband ."-".

ok I Cancel | Help | Apply |

ADC start event
Controls whether this PWM and ADC associated with the same
EV module are synchronized. Select None for no synchronization
or select an interrupt to generate the Source Start-of-Conversion
(SOC) signal for the associated ADC.

®* None — The ADC and PWM are not synchronized. The EV
does not generate an SOC signal and the ADC is triggered by
software (that is, the A/D conversion occurs when the ADC
block is executed in the software).

4-139

C281x PWM

® Underflow interrupt — The EV generates an SOC signal for
the ADC associated with the same EV module when the board’s
General Purpose (GP) timer counter reaches a hexadecimal
value of FFFFh.

® Period interrupt — The EV generates an SOC signal for the
ADC associated with the same EV module when the value in GP
timer matches the value in the period register. The value set in
Waveform period above determines the value in the register.

Note If you select Period interrupt and specify a sampling
time less than the specified (Waveform period)/(Event timer
clock speed), zero-order hold interpolation will occur. (For
example, if you enter 64000 as the waveform period, the period
for the timer is 64000/75 MHz = 8.5333e-004. If you enter a
Sample time in the C281x ADC dialog that is less than this
result, it will cause zero-order hold interpolation.)

® Compare interrupt — The EV generates an SOC signal for
the ADC associated with the same EV module when the value
in the GP timer matches the value in the compare register.
The value set in Pulse width above determines the value in
the register.

See Also C281x ADC

4-140

C281x QEP

Purpose

Library

Description

DEFR

CEEx

QEP

Quadrature encoder pulse circuit
c281xdspchiplib in Embedded Target for TI C2000 DSP

Each F2812 Event Manager has three capture units, which can log
transitions on its capture unit pins. Event manager A (EVA) uses
capture units 1, 2, and 3. Event manager B (EVB) uses capture units
4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts
quadrature encoded input pulses on these capture unit pins. QEP
pulses are two sequences of pulses with varying frequency and a fixed
phase shift of 90 degrees (or one-quarter of a period). Both edges of
the QEP pulses are counted so the frequency of the QEP clock is four
times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful
for obtaining speed and position information from a rotating machine.
Logic in the QEP circuit determines the direction of rotation by which
sequence is leading. For module A, if the QEP1 sequence leads, the
general-purpose (GP) Timer counts up and if the QEP2 sequence leads,
the timer counts down. The pulse count and frequency determine the
angular position and speed.

4-141

C281x QEP

L]

Dlalog [Z]source Block Parameters: DEP x|

Box 26 DEP (mask)
Configures quadrature encoder pulze circuit azzociated with the zelected Event
tanager module to decode and count quadrature encoded pulzes applied to related
input pinz [QEPT and QEPZ for EVA or BEF3 and GEP4 for EVE]. Depending on the
zelected counting mode, the output is either the pulse count or the rotor speed [when
a pulze gignal comes from an optical encoder mounted on a rotating machine).

—Parameters
Mockule: [EEAGCGCCGCGC ~ |
Counting mnde:l Counter LI
|nitial count ;
i
Sample time:
joom
Drata type:l auto LI
ok I Cancel | Help |
Module

Specifies which QEP pins to use:
e A — Uses QEP1 and QEP2 pins.
® B — Uses QEP3 and QEP4 pins.

Counting mode
Specifies how to count the QEP pulses:

® Counter — Count the pulses based on the board’s GP Timer 2
(or GP Timer 4 for EVB).

® RPM — Count the machine’s revolutions per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the
direction to use as positive rotation. This field appears only if
you select RPM above.

4-142

C281x QEP

Encoder resolution
Number of QEP pulses per revolution. This field appears only
if you select RPM above.

Initial count
Initial value for the counter. The default is 0.

Sample time

Time interval, in seconds, between consecutive reads from the
QEP pins.

Data type
Data type of the QEP pin data. The data is read as 16-bit data
and then cast to the selected data type. Valid data types are auto,
double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

4-143

C281x SCI Receive

Purpose

Library

Description

SG| ROV

CEEx

37

5G| Rece e

4-144

Receive data on target via serial communications interface (SCI) from
host

c281xdspchiplib in Embedded Target for TI C2000 DSP

The C281x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals
in non-return-to-zero (NRZ) format. This block configures the C281x
DSP target to receive scalar or vector data from the COM port via the
C28x target’s COM port.

Note You can have only one C281x SCI Receive block in a single model.

Many SCI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

C281x SCI Receive

(]
Dialog x

Box —C28 501 Recsive (mask)

Configures Serial Communication Interface [SCI of the C28x DSF ta
receive data from SCIRXD pin. This enables asynchronous serial
digital comnunications between the DSF and other peripherals that
uze the standard MRZ [non-return-to-zera) format.

—Parameters
C1 modul: (TN - |
MHumber of FIFOs requested:l 1 LI
Sample tirme:
jo1
Data t_l,Jpe:I uintg ﬂ

[~ Post intermupt when data is received

Ok I Cancel Help

SCI module
SCI module to be used for communications.

Number of FIFOs requested
Number of elements to be read from the hardware FIFO.

Sample time
Sample time, T, for the block’s input sampling.

Data type
Data type of the output data. Available options are int8 and
uint8.

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

4-145

C281x SCI Receive

References Detailed information on the SCI module is in the TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C281x SCI Transmit, C281x Hardware Interrupt

4-146

C281x SCI Transmit

Purpose

Library

Description

[«=T-3F
T

SG1HMT

SG1 TRnsmit

Dialog
Box

Transmit data on target via serial communications interface (SCI) from
host

c281xdspchiplib in Embedded Target for TI C2000 DSP

The C281x SCI Transmit block transmits scalar or vector data in int8 or
uint8 format from the C281x target’s COM ports in non-return-to-zero
(NRZ) format. You can specify how many of the six target COM ports to
use. The sampling rate and data type are inherited from the input port.
If no data type is specified, the default data type is uints.

Note You can have only one C281x SCI Transmit block in a single
model.

Many SCI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

[Z]sink Block Parameters: SCT Transmit |

— 28 SCI Tranzmit [mask]

Configures Serial Communication Interface [SCI) of the C28x DSF ta tranzmit data via
SCITHD pin. Thiz enables aspnchronous serial digital communications between the
DSP and other peripherals that uze the standard MRZ [non-return-to-zera) farmat.

—Parameters
5.1 mocie: FENAARRRR - |
Mumber of FIFOs lequested:l 1 LI

[~ Post interupt when data is ransmitted

QK I Cancel Help Apply

4-147

C281x SCI Transmit

References

See Also

4-148

SCI module
SCI module to be used for communications.

Number of FIFOs requested
Number of elements to be transmitted from the hardware FIFO.

Post interrupt when data is transmitted
Check this check box to post an asynchronous interrupt when
data is transmitted.

Detailed information on the SCI module is in the TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

C281x SCI Receive, C281x Hardware Interrupt

C281x SPI Receive

Purpose
Library
Description

CEEx
Rx

SFI RCW
5Pl Recehe

Receive data via the serial peripheral interface (SPI) on the target
c281xdspchiplib in Embedded Target for TI C2000 DSP

The C281x SPI Receive supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOM1 pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

Note You can have only one C281x SPI Receive block in a single model.

Many SPI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

4-149

C281x SPI Receive

(]
Dialog x

Box —C28 SPI Recsive (mask)

C28% 5P Receive block. receives data from SPISOMO and
SFISIMI pin when rinning in slave and master mode, respectively.

—Parameters

Sample time:
0.0071

Data t_l,Jpe:I auto ﬂ

[~ Post intermupt when data is received

0K I Cancel Help

Sample time
Sample time, T, for the block’s input sampling.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, and uint32.

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

See Also C281x SPI Transmit, C281x Hardware Interrupt

4-150

C281x SPI Transmit

Purpose

Library

Description

T

CEEx

SPIEMT

SP| TRnsmit

Dialog
Box

See Also

Transmit data via the serial peripheral interface (SPI) to the host
c281xdspchiplib in Embedded Target for TI C2000 DSP

The C281x SPI Transmit supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOM1 pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate and data type are inherited from the input port. If
no data type is specified, the default data type is uint16.

Note You can have only one C281x SPI Transmit block in a single
model.

Many SPI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

E! Sink Block Parameters: C28x SPI Transmikt x|

|7|:28>: SPI Tranzmit [maszk] (link]

C28x SPI Transmit block tranzmitz data to SPISOMI and SPISIMO pin when running in
zlave and master mode, rezpectively,

Cancel Help Apply

C281x SPI Receive

4-151

C281x Timer

Purpose Configure up to four general-purpose, stand-alone Event Manager
timers.

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x event-manager (EV) modules include general-purpose (GP)

EETE timers. There are two general-purpose (GP) timers in each module.
These timers can be used as independent time bases in various
EV Timer applications.
Tirmzr

The C281x Timer block lets you set the periodicity of the general-purpose
timers, and configure them to post interrupts under specified conditions.

Dialog 5I

Box —C28= BV Timer [mask] [link]

Initialize general purpose Event Manager timer, Enables one to define timer period.
compare walue and intermupt request for various events.

—Parameters
ol [EA— -
Tirner o I Tirner 1 LI
Timer period;
{10000

Compare value:
| 5000

[~ Puost interupt on period match

[~ Post interupt an underfos
[~ Post interrupt on averflos

[~ Post interrupt an compare match

ok I Cancel Help Apply

4-152

C281x Timer

Module

Timer no
Select which of four possible timers to configure. Setting Module
to A lets you select Timer 1 or Timer 2 in Timer no. Setting
Module to B lets you select Timer 3 or Timer 4 in Timer no.

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The default is 10000.

Note “Clock cycles” refers to the high-speed peripheral clock on
the C281x chip. This clock is 75 MHz by default because the
high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Compare value
Enter a constant value to be used for comparison to the running
timer value for the purpose of generating interrupts. Enter a
value from 0 to 65535. The default is 5000. Note that interrupts
will be generated only if Post interrupt on compare match
is selected.

Post interrupt on period match
Select this check box to generate an interrupt whenever the value
of the timer reaches its maximum value as specified in Timer
period.

Post interrupt on underflow
Select this check box to generate an interrupt whenever the value
of the timer cycles back to 0.

Post interrupt on overflow
Select this check box to generate an interrupt whenever the value
of the timer reaches its maximum possible value of 65535. Note
that unless Timer period is set to 65535, this interrupt will
never be generated even if this check box is selected.

4-153

C281x Timer

Post interrupt on compare match
Select this check box to generate an interrupt whenever the value
of the timer equals Compare value.

See Also C281x Hardware Interrupt, Idle Task

4-154

Clarke Transformation

Purpose Convert balanced three-phase quantities to balanced two-phase
quadrature quantities
Library c28xdmclib in Embedded Target for TI C2000 DSP
Description This block converts balanced three-phase quantities into balanced
o two-phase quadrature quantities. The transformation implements
qla @ Idp these equations
e Clarke lap “Id - Ia”
Clarke
Transformation

Ig = (216 +Ia)/ o3

and is illustrated in the following figure.

Quadrature: 2-phase
3phase 43¢
a

[l [} ; id o
TFFFR ‘,‘1 A —_— {q yl ‘1 —
! }: \ y] v f

j
la Il " Jl il
\:’1‘_ CLARKE . 1\ ;/\\ﬂ

[y}

' N R AR
i MY
8000h / ‘-’j l\/ ’ﬁ‘f" 1\‘/\ 8000h / \\}UfH \l}{

The inputs to this block are the phase a (Ia) and phase b (Ib)
components of the balanced three-phase quantities and the outputs
are the direct axis (Id) component and the quadrature axis (1q) of the
transformed signal.

The instantaneous outputs are defined by the following equations:
“id = I sin(wt)”

“lqg =1 sin(wt + n/2)”

4-155

Clarke Transformation

Dialog
Box

References

See Also

4-156

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

E Block Parameters: Clarke Transformation 2=

Clarke Transformation [mask]

Thiz block perfarms transformation of three-phase quantities into balanced bwo-phase
quadrature quantitiez. All inputz and outputs are signed 32-bit fixed-point numberz with
[walue between 1 and 29,

Cancel | Help | Apply |

Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRCO080, available at the
Texas Instruments Web site.

Inverse Park Transformation, Park Transformation, PID Controller,
Space Vector Generator, Speed Measurement

Custom C280x Board

Purpose
Library

Description

Custom C220:
Board

Target preferences for custom C280x board
c2000tgtpreflib in Embedded Target for TI C2000 DSP

Options on the block mask let you set features of code generation for
your custom board based on a C2801, C2806, or C2808 chip. Adding
this block to your Simulink model provides access to building, linking,
compiling, and targeting settings you need to configure the code that
Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

4-157

Custom C280x Board

Dialog BuildOptions
Box
g DSPTGTPKG Target Preferences Setup ;lglﬂ
= BuildOptions CSPTotPky. CustomBoardBuildOptions
- Compilerdptions CEPTotPky.Compilerdptions
— Campilererhosity :l\-ferbnse
— KeepaSMFiles ®|False
— OptimizationLevel | Functioni-oZ)
- symbolicDebugging v |ves
= LinkerOptions DEPTotPky.CustarmBoardLinkerOptions
— CreateMAPFile [True
- KeepOBJFiles F&F True
— LinkerChDFile :llnternal_memury_map
L— LinkerCmdFileMame null
= RBunTimeQptions CDSPTotPky RunTimeOptions
— BuildAction :lEluiId_and_execute
L OwverrunAction :lc::untinue
[+— CCSLink DEPTotPky. C2800CC5Link
+— CodeGeneration DEPTatPky.C2800CodeGenearation
+— DEPEoard DSPTgtPky F280:D5PEaard

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs.
Options are

® Verbose — Returns all compiler messages.
® Quiet — Suppresses compiler progress messages.
® Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after
creation. The default is False — .asm files are not kept in your

4-158

Custom C280x Board

current directory. If you choose to keep the .asm files, set this
option to True.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-02).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True — the listing is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object files to generate a single executable common object file
format (COFF) file that you run on the target DSP. The object
files are saved to your current project directory. Saving your .obj
files can speed up the compile process by not having to recompile
files that you have not changed. The default is True — the .obj
files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility.
Linker command file types are

4-159

Custom C280x Board

4-160

e Internal _memory_map — Uses the small memory model on the
target, which requires that all sections of the code and data
fit into the internal memory available only on the C280x chip
(minus the flash memory).

If you select Internal_memory_map, but your data or program
requires far calls, the TT compiler returns an error message in
the CCS IDE indicating that your data does not fit in internal
memory or that your code does not fit in internal memory. The
error message looks like one of the following:

error: can't allocate '.far'
error: can't allocate '.text'

Note that if you use Internal memory_map, specifying a
LinkerCmdFileName has no effect.

e Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. Note that the software does not
verify that the commands in this file are correct.

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The order
in which the actions are presented is significant — each listed
action does what the previous action in the list does, and adds
new features of its own:

® Generate _code_only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the T
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and
many others. It puts the files in a build directory named

Custom C280x Board

modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create CCS_Project for the build action.

® Create CCS_Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

® Build — Builds the executable COFF file, but does not
download the file to the target.

® Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This is the default.

Note When you build and execute a model on your target,
Real-Time Workshop resets the target automatically. You do
not need to reset the board before building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs:

® Continue — Ignore overruns encountered while running the
model. This is the default.

® Halt — Stop program execution.

4-161

Custom C280x Board

4-162

CCSLink

=+ iz

£ DSPTGTPKG Target Preferences Setup 10| =]

EuildOptions DSPTatPkg. CustomBoardBuildOptians
CCELink DSPTgtPkg . C2800CCS5Link

CodeGeneration DEPTgtFky.C2800CodeGeneration
D5PEoard DSPTgtPkg F280xD5PBoard

CCSHandleMame CCS_0hj
ExportCCEHandle [True

CCSHandleName

Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and
MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle

Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this is
set to True (the default), then after you build your model, you will
see the CCS object in your MATLAB workspace browser with the
name you provided and class type ccsdsp.

Custom C280x Board

CodeGeneration — Scheduler

g DSPTGTPKG Target Preferences Setup ;|g|5|
[+ BuildQptions DSPTotPky. CustomBoardBuildOptions
[+ CCSLink DSPTotPkg. C2800CCSLink
= CodeGeneration DEPTgtFky.C2800CodeGeneration
Scheduler DSPTatPkg.C28005cheduler

Algorithm ﬂPreemptive_prioriw_based

Tirner >|cPu_timern
+— DSPBoard DEPTatFkg.F280xDEPBoard

Algorithm

Algorithm to use for scheduling. The algorithm options are

® Preemptive priority based — This scheduler runs based

on the timer interrupt. The timer period is set based on

the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest group
(the base rate task) runs first and other tasks run in the order
determined by their sample rates from faster tasks to slower
tasks. For more information, see Models with Multiple Sample
Rates in the Real Time Workshop documentation.

Free_running — This scheduler does not use any interrupts.
Tasks run in priority-based order and the execution of each
task depends only on how fast the task can run on the given
processor. This algorithm does not support preemption or
multitasking. (Selecting MultiTasking as the Tasking mode
in Configuration Parameters-Solver is not allowed for this
scheduling.) Overruns do not occur with this type of scheduling,
so any value in BuildOptions — RuntimeOptions
OverrunAction is ignored.

4-163

Custom C280x Board

Timer
CPU timer to use for scheduling.

4-164

Custom C280x Board

DSPBoard

3

- DSPBEoard

DSPBoardLabel

DEPChip

- ADC

—ACQ_FS

— ADCLKPS

— CP3

— ExternalReferenceSelector
— OffsetCorrection’alue
— DSPChipLabel

[eCAR_A

— BaudRatePrescaler
— EnhancedCANMade
— SAM

— SBG

— S

— SelfTestMoade

— TSEG1

- TEEG2

- eCAN_B

— BaudRatePrescaler
— EnhancedCANMode
— PinAssignment_Rx
— PinAssignment_Tx
— SAh

— SBG

— S

— SelfTestMode

— TEEG1

L TSEG2

[ePyvhd

— PinAssignment_SYMNCI
— PinAssignment_SYyMNCO
— PinAssignment_TZ4
L PinAssignment_TZ&

DSPTtPkg F220:DSFPBoard
=Enteryaur board name=
DSPTtP kg C280xDSP Chip
DSPTytPky C280xADC

|4

>z

~|1

ﬂFaIse
1}

jTI TMS320C2808
DSPTatPkg.eCAN
10

WTrue

ﬂSampIe_nne_time

:IOnI\,r_faIIing_edges

>z

lIFalse

>|6

Rk
DEPTatFkg.eCANE
10

WTrue

:INDFIE

ﬂNone

:ISampIe_nne_time

jOnI\,r_faIIing_edges

P
ﬂFaIse
|6
|z
DSPTotP kg ePi
ﬂNone
:INDFIE
ﬂNone
:INDFIE

4-165

Custom C280x Board

4-166

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match the label (name) of the
board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

DSPChipLabel
DSP chip model. All supported C280x chips are listed. Select the
DSP chip installed on your target. The selected value defaults to
TI TMS320C2808. Other available options are TI TMS320C2801
and TI TMS320C2806.

ADC
The internal timing of the ADC module is controlled by the
high-speed peripheral clock (HSPCLK). The ADC operating clock
speed is derived in several prescaler stages from the HSPCLK
speed. The following are the settable parameters for the ADC
clock prescaler:

ACQ_PS
This value does not actually have a direct effect on the ADC
module’s core clock speed. It serves to determine the width
of the sampling/acquisition period. The higher the value,
the wider the sampling period. The default value is 4.

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first
step in deriving the ADC module’s core clock speed. The
default value is 3.

Custom C280x Board

CPS
After the HSPCLK speed is divided by the ADCLKPS
value, the result will be further divided by 2 if the CPS
parameter is set to 1, which is the default.

ExternalReferenceSelector
By default, an internally generated bandgap voltage
reference is selected to supply the ADC logic. However,
depending on application requirements, the ADC logic may
be supplied by an external voltage reference. Choose True
to use an external voltage reference.

OffsetCorrectionValue
The 280x ADC supports offset correction via a 9-bit value
that will be added or subtracted before the results are
available in the ADC result registers. Timing for results is
not affected. The default for this field is 0.

eCAN_A
The settable parameters are

BaudRatePrescaler
Value by which to scale the bit rate. Valid values are from
1 to 256.

EnhancedCANMode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The
default is True. Setting this parameter to False enables
only standard mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample three times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

4-167

Custom C280x Board

4-168

SBG
Sets the message resynchronization triggering.
Options are Only falling edges and
Both_falling and_rising edges.

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If True, sets the eCAN module to loopback mode, where
a “dummy” acknowledge message is sent back without
needing an acknowledge bit. The default is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
the BaudRatePrescaler, determines the length of a bit on
the eCAN bus. TSEG1 must be greater than TSEG2 and
the Information Processing Time (IPT). The IPT is the time
needed to process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1
are from 1 through 16.

TSEG2
Sets the value of time segment 2 (PHASE_SEG2), which,
with TSEG1 and the BaudRatePrescaler, determines the
length of a bit on the eCAN bus. TSEG2 must be less than
or equal to TSEG1 and greater than or equal to IPT. Valid
values for TSEG2 are from 1 through 8.

eCAN_B

The settable parameters for the eCAN_B module include all the
parameters for the eCAN_A module.

ePWM

Assigns ePWM signals to GPIO pins, if required.

Custom C280x Board
|

PinAssignment_SYNCI
Assigns the ePWM external sync pulse input (SYNCI) to
a GPIO pin. Choices are None (the default), GPI06, and
GPIO32.

PinAssignment_SYNCO
Assigns the ePWM external sync pulse output (SYNCO)
to a GPIO pin. Choices are None (the default), GPI06, and
GPIO33.

PinAssignment_TZ5
Assigns the trip-zone input 5 (TZ5) to a GPIO pin. Choices
are None (the default), GPI016, and GPI028.

PinAssignment_TZ6
Assigns the trip-zone input 6(TZ6) to a GPIO pin. Choices
are None (the default), GPI017, and GPI029.

See Also C280x ADC, C280x eCAN Receive, C280x eCAN Transmit, C280x
ePWM

4-169

Custom C281x Board

Purpose
Library

Description

Custom C221x
Board

4-170

Target preferences for custom C281x board
c2000tgtpreflib in Embedded Target for TI C2000 DSP

Options on the block mask let you set features of code generation for
your custom board based on a C2810, F2810, C2811, F2811, R2811,
C2812, F2812, or R2812 chip. Adding this block to your Simulink model
provides access to building, linking, compiling, and targeting settings
you need to configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

Custom C281x Board

Dialog
Box

BuildOptions
i DSPTGTPKG Target Preferences Setup =10zl
= BuildOptions DEPTotPky. CustomBoardBuildOptions
-1 CompilerOptions DSPTotPky. Compilerptions
— CompileryYerhosity :l\-ferbnse
— KeepAShFiles B|Faise
— OptimizationLevel :lFunctinn(—DE)
L SymbolicDebugging :lYes
= LinkerOptions DEPTotPky.CustomBoardLinkerOptions
- CreateMARFile [True
- KeepOBJFiles F& True
— LinkerChDFile :llnternal_memnr\,r_map
L— LinkerCmdFileMame null
= RBunTimeQptions DSPTotPky RunTimeOptions
— Buildaction | Build_and_execute
— OverrunAction :lCnntinue
[+ CCSLink DEPTotPky. C2800CCELink
+— CodeGeneration DSPToutPky.C2800CodeGeneration
+— DSPBoard DEPTotPky.F281xDEFPBoard

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs.
Options are

® Verbose — Returns all compiler messages.
® Quiet — Suppresses compiler progress messages.
® Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after
creation. The default is false — .asm files are not kept in your

Custom C281x Board

current directory. If you choose to keep the .asm files, set this
option to true.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-02).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True — the listing is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object files to generate a single executable common object file
format (COFF) file that you run on the target DSP. The object
files are saved to your current project directory. Saving your .obj
files can speed up the compile process by not having to recompile
files that you have not changed. The default is True — the .obj
files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility.
Linker command file types are

4-172

Custom C281x Board

e Internal memory map — Uses the small memory model on the
target, which requires that all sections of the code and data fit
into the internal memory available only on the C281x chip (not
including the flash memory).

If you select Internal _memory_map, but your data or program
requires far calls, the TI compiler returns an error message in
the CCS IDE indicating that your data does not fit in internal
memory or that your code does not fit in internal memory. The
error message looks like one of the following:

error: can't allocate '.far'
error: can't allocate '.text'

Note that if you use Internal memory map, specifying a
LinkerCmdFileName has no effect.

® Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. Note that the software does not
verify that the commands in this file are correct.

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The
actions are cumulative — each listed action adds features to the
previous action on the list and includes all the previous features:

® Generate_code only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the T
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and

many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.

4-173

Custom C281x Board

This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create CCS_Project for the build action.

® Create CCS Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

® Build — Builds the executable COFF file, but does not
download the file to the target.

e Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This is the default.

Note When you build and execute a model on your target,
the Real-Time Workshop build process resets the target
automatically. You do not need to reset the board before
building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs:

® Continue — Ignore overruns encountered while running the
model. This is the default.

® Halt — Stop program execution.

4-174

Custom C281x Board

=10/ x|

CCSLink

£ DSPTGTPKG Target Preferences Setup

BuildOptions

- CCSLink DEPTotPky.C2800CCELink
CCSHandleMame CCE_Ohj
ExportCCEHandle [True

CodeGeneration
DSPBoard

[+

DEPTotPky. CustomBoardBuildOptions

DEPTotPky.C2800CadeGeneratian
DEPTotPky.F281xDEFPBoard

CCSHandleName

Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TT C2000 DSP makes a link

between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar

with function ccsdsp, which creates links between the IDE and

MATLAB. This option refers to the same link, called cc in the

function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle

Whether to export the CCS handle to your MATLAB workspace,

giving it the name you assigned in CCSHandleName. If this
is set to True, after you build your model, you will see the CCS
object in your MATLAB workspace browser with the name you
provided and class type ccsdsp.

4-175

Custom C281x Board

4-176

CodeGeneration — Scheduler

g DSPTGTPKG Target Preferences Setup ;|g|5|
[+ BuildQptions DSPTatPky. CustomBoardBuildOptions
[+ CCSLink DSPTotPky.C2800CCSLink
= CodeGeneration DEPTatPky.C2800CodeGenearation
Scheduler DSPTatPky.C28005cheduler

Algarithrm :lPreemptive_prinrity_hased

Tirner =|cPu_timern
+— DSPBoard DEPTotPky.F281xDEFPBoard

Algorithm
Algorithm to use for scheduling. The algorithm options are

® Preemptive priority based — This scheduler runs based

on the timer interrupt. The timer period is set based on

the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest group
(the base rate task) runs first and other tasks run in the order
determined by their sample rates from faster tasks to slower
tasks. For more information, see Models with Multiple Sample
Rates in the Real Time Workshop documentation.

Free_running — This scheduler does not use any interrupts.
Tasks run in priority-based order and the execution of each
task depends only on how fast the task can run on the given
processor. This algorithm does not support preemption or
multitasking. (Selecting MultiTasking as the Tasking mode
in Configuration Parameters-Solver is not allowed for this
scheduling.) Overruns do not occur with this type of scheduling,
so any value in BuildOptions — RuntimeOptions
OverrunAction is ignored.

Custom C281x Board

Timer
CPU timer to use for scheduling.

4-177

Custom C281x Board

4-178

DSPBoard

% DSPBoard

DEFBoardLahbel

DSPChip

H—]—ADC

—ACO_PS

— ADCLKFS

L CPS

— DEPChipLabel

=Sl

— BaudRate

— CharacterLenathBits
— EnablelLoopBack
— EnableParity

— NumberQOfStopBits
— Paritymode

— Suspensioniode
— UARTInterface

= 5FI

— BaudRateF actar

— ClockPhase

— ClackPolarity

— DataBits

— EnableFIFO

— EnableLoophack
— FIFOMumbers

— FIFOTransmitDelay
— Mode

L Buspensiondode
= AN

— BaudRatePrescaler
— EnhancedCAMNMOde
— SAM

— SBG

— S

— SelfTestode

— TSEG1

L TEEG2

DEPTatFky.F281xDEPBoard
=Enteryour hoard name=
DEPTatFky.C281xDSPChip
DSPTatPkg ADC

|4

|3

halll

:lTI TMS320C2810
DEPTatFky.5CI

~|agn0
>l
iIFaIse
lIFalse
=1
:lE\ten
| got_ahort
:lRaw_data
DEPTatFky.C28005F1
127
jNo_deIa\;
:IRising_edge
=18
lIFalse
lIFalse
=1
1]

ﬂMaster
:IFree_run

DEPTatFky.eCAN
10
WTrue
:ISampIe_nne_time
jOnI\,r_faIIing_edges

>z
lIFalse
>|s
|6

Custom C281x Board

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match the label (name) of the
board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

DSPChipLabel
DSP chip model. All supported C281x chips are listed. Select the
DSP chip installed on your target. The selected value defaults to
TI TMS320C2810. Other available options are

TI TMS320F2810
TI TMS320C2811
TI TMS320F2811
TI TMS320R2811
TI TMS320C2812
TI TMS320F2812
TI TMS320R2812

The internal timing of the ADC module is controlled by the
high-speed peripheral clock (HSPCLK). The ADC operating clock
speed is derived in several prescaler stages from the HSPCLK
speed. The following are the settable parameters for the ADC
clock prescaler:

ACQ_PS
This value does not actually have a direct effect on the ADC
module’s core clock speed. It serves to determine the width
of the sampling/acquisition period. The higher the value,
the wider the sampling period. The default value is 4.

4-179

Custom C281x Board

SCI

4-180

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first
step in deriving the ADC module’s core clock speed. The
default value is 3.

CPS
After the HSPCLK speed is divided by the ADCLKPS
value, the result will be further divided by 2 if the CPS
parameter is set to 1, which is the default.

Parameters that affect the serial communications interfaces
(SCIs) on the target. The settable parameters are

BaudRate
Baud rate for transmitting and receiving data. Choices are
115200, 57600, 38400, 19200, 9600 (the default), 4800, 2400,
1200, 300, and 100.

CharacterLengthBits
Length in bits from 1 to 8 of each transmitted/received
character.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this is enabled, a C28x
DSP’s Tx pin is internally connected to its Rx pin and it can
transmit data from its output port to its input port to check
the integrity of the transmission.

EnableParity
Select True to enable parity checking on the transmit/receive
data.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

Custom C281x Board

ParityMode
Type of parity to use. Available selections are 0dd parity
or Even parity. Enable Parity must be set to True to use
the selected ParityMode.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

UARTInterface
Protocol to use when sending or receiving UART mode
data. Although available protocols are Raw_data and
To/From_host_block, only Raw_data is supported.
Raw_data sends or receives all data in its raw format, one
byte at a time. Since the C281x SCI module has a 16-byte
FIFO buffer, the C281x SCI Receive and Transmit blocks
can receive and transmit scalar or vector data.

To/From_host_block is not supported currently and

is provided only for use in demos. It uses the serial
communication interface to communicate with host-side SCI
blocks. It attempts to read and interpret a specified number
of elements via a for loop using internal protocol.

SPI
Parameters that affect the serial peripheral interface (SPI) on the
target. The settable parameters are

BaudRateFactor

Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

4-181

Custom C281x Board

4-182

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Whether the data is output immediately (No_delay) or
delayed by a half clock cycle (Delay half cycle) with
respect to the rising edge.

ClockPolarity
Whether the data is output at the Rising edge or
Falling edge of the system clock.

DataBits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-'. If you send data
greater than this value, the buffer overflows.

EnableFIFO
Select True to enable the FIFO buffers in the SPI module.

EnableLoopback
Select True to enable the loopback function for self-test
and diagnostic purposes only. The SPI must be in master
mode to use loopback. When this is enabled, a C281x DSP’s
SIMO/SOMI lines are connected internally.

FIFONumbers
Enter the number of FIFO buffers to enable. You can specify
1 to 16 buffers.

FIFOTransmitDelay
Amount of time in target clock cycles to pause between data
transmissions.

Mode
Whether to run the SPI module in Master or Slave mode.
Master mode initiates the transmission. Slave mode is
triggered by another master SPI and is synchronized to the
clock used by the master SPI. Note that this option cannot
be changed at run-time.

Custom C281x Board

SuspensionMode

eCAN

Suspension to use when debugging your program with
Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

Parameters that affect the extended Control Area Network
(eCAN) module. Most of these parameters affect the eCAN bit
timing.

eCAN Bit Timing

The eCAN protocol divides the nominal bit time into the following
four segments:

SYNCSEG — Time used to synchronize the nodes on the bus.
It is always one time quantum (TQ), which is defined as

TQ - BaudRatePrescaler
SYSCLEK

where SYSCLK is the CAN module system clock frequency, and
the BaudRatePrescaler is defined below.

PROP_SEG — Time used to compensate for physical delays
in the network

PHASE_SEG1 — Phase used to compensate for positive edge
phase error

PHASE_SEG2 — Phase used to compensate for negative edge
phase error

The eCAN bit timing is shown in the following illustration.

4-183

Custom C281x Board

4-184

« Nominal it ims >
SPNCSES —s— e—sim—!
l -« ISE61 R L
T |t |
paini poinl

Calculating Baud Rate

The length of a bit in the CAN module is determined by TSEG1,
TSEG2, and BaudRatePrescaler parameters. The baud rate is

BaudRate =

SYSCLK

BaudRatePrescaler =« BitTime

where BitTime = TSEGI+TSEG2+1

The following table shows the corresponding baud rates (for a
150-Mhz clock as on the F2812 DSP) for the indicated parameter

settings.
BaudRate
TSEG1 | TSEG2 | Prescaler | SJW | SBG | Baud Rate
8 6 20 0.5 Mbit/s
8 6 10 1 Mbit/s
8 6 5 0 2 Mbit/s

Custom C281x Board

For additional details, refer to the 280x Enhanced Controller Area
Network (eCAN) Reference Guide, Literature Number SPRU074C,
on the Texas Instruments Web site.

The settable eCAN parameters are

BaudRatePrescaler
Value by which to scale the bit rate. Valid values are
from 1 to 256. As noted in the equation above, this value
determines the value of TQ.

EnhancedCANMode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The
default is True. Setting this parameter to False enables
only standard mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample three times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

SBG
Sets the message resynchronization triggering.
Options are Only falling edges and
Both_falling and_rising edges.

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If True, sets the eCAN module to loopback mode, where
a “dummy” acknowledge message is sent back without
needing an acknowledge bit. The default is False.

4-185

Custom C281x Board

See Also

4-186

TSEG1

Sets the value of time segment 1, which, with TSEG2 and
BaudRatePrescaler, determines the length of a bit on the
eCAN bus. TSEG1 must be greater than TSEG2 and the
Information Processing Time (IPT). The IPT is the time
needed to process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1
are from 1 through 16.

TSEG2

Sets the value of time segment 2 (PHASE_SEG2), which,
with TSEG1 and BaudRatePrescaler, determines the
length of a bit on the eCAN bus. TSEG2 must be less than
or equal to TSEG1 and greater than or equal to IPT. Valid
values for TSEG2 are from 1 through 8.

C281x ADC, C281x eCAN Receive, C281x eCAN Transmit, C281x PWM

Division IQN

Purpose
Library

Description

IQmath

A
Yh
B

QI Ndliv
1IN 1QMN

Dialog
Box

See Also

Divide two IQ numbers
tiigmathlib in Embedded Target for TI C2000 DSP
This block divides two numbers that use the same Q format, using the

Newton-Raphson technique. The resulting quotient uses the same Q
format at the inputs.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: IQN / IQN |

Division QN [mazk] [link]

This block, divides twa IBN numbers uzing Mewton-F aphson technique.
Al inputz ahd outputs are signed 32-bit fixed-point numbers that have the
zame [value, The rezpective [AMdiv function iz zelected bazed on the &
walue,

QK I Cancel | Help | Appl |

Absolute IQN, Arctangent IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x
int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x
IQN2, Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

4-187

F2808 eZdsp

Purpose
Library

Description

F2808 eZdsp

4-188

F2808 eZdsp DSK target preferences
c2000tgtpreflib in Embedded Target for TI C2000 DSP

Options on the block mask let you set features of code generation
for your Spectrum Digital F2808 eZdsp target. Adding this block to
your Simulink model provides access to building, linking, compiling,
and targeting settings you need to configure the code that Real-Time
Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

F2808 eZdsp

Dialog
Box

BuildOptions
i. DSPTGTPKG Target Preferences Setup]
= BuildOptions DSPTatPkg BuildOptions
- Compilerdptions DEPTatFkg. CompilerOptions
—— Campilererhosity :I\-"EHJDSE
— KeepAShFiles @|Faise
— OptimizationLevel jFunction(—ﬂ)
- SymbolicDebugging :l‘r‘es
= LinkerOptions DEPTatFkg.LinkerOptions
- CreateMARFile [True
- KeepOBJFiles [True
— LinkerChDFile :llnternal_memur\,r_map
L— LinkerCmdFileMame null
[RunTimeOptians DSPTatPkg RunTimeOptions
— Buildaction | Build_and_execute
— OverrunAction :lCuntinue
[+ CCSLink DSPTotPkg. C2800CCSLINk
[+ CodeGeneration DSPTotPka C2800CodeGeneration
+— DSPBoard DSPTutPky efdspF 28080 5FBoard
0K |

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs.
Options are

® Verbose — Returns all compiler messages.
® Quiet — Suppresses compiler progress messages.
® Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after

4-189

F2808 eZdsp

4-190

creation. The default is False — .asm files are not kept in your
current directory. If you choose to keep the .asm files, set this
option to True.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-02).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True — the listing is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object files to generate a single executable common object file
format (COFF) file that you run on the target DSP. The object
files are saved to your current project directory. Saving your .obj
files can speed up the compile process by not having to recompile
files that you have not changed. The default is True — the .obj
files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and

F2808 eZdsp

the names of input files to the linker or hex conversion utility.
Linker command file types are

e Internal memory map — Uses the small memory model on the
target, which requires that all sections of the code and data fit
into the memory available only on the F2808 DSP chip (minus
the flash memory).

When you select the Internal memory map option, the
Embedded Target for TI C2000 DSP specifies that only the
available internal memory on the F2808 is used.

If you select Internal_memory_map, but your data or program
requires far calls, the TI compiler returns an error message in
the CCS IDE indicating that your data does not fit in internal
memory or that your code does not fit in internal memory. The
error message looks like one of the following:

error: can't allocate '.far'
error: can't allocate '.text'

To eliminate these errors, select Full memory_map. Note that
your program might run slower than if you use the internal
map option.

e Full memory map — Uses the large memory model on the
target, which does not restrict the size of the code and data
sections to DSP memory only. Your data can use the storage
space up to the limits of the board.

® Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. Note that the software does not
verify that the commands in this file are correct. Note that if
you use Internal memory _map or Full memory_map, specifying
a LinkerCmdFileName has no effect.

® Flash _memory map — Uses flash memory, in which case your
data can use the full storage capacity of the available flash
memory. Note that when you are using flash memory, you

4-191

F2808 eZdsp

cannot set the BuildAction preference in the BuildOptions
— RunTimeOptions section to Build and_execute.

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The order
in which the actions are presented is significant — each listed
action does what the previous action in the list does, and adds
new features of its own:

® Generate _code_only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the TT
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and

many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create CCS_Project for the build action.

® Create CCS Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

® Build — Builds the executable COFF file, but does not
download the file to the target.

e Build and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This is the default.

4-192

F2808 eZdsp

Note When you build and execute a model on your target,
the Real-Time Workshop build process resets the target
automatically. You do not need to reset the board before

building models.

OverrunAction

Defines the action to take when an interrupt overrun occurs:

® Continue — Ignore overruns encountered while running the

model. This is the default.

® Halt — Stop program execution.
CCSLink

£ DSPTGTPKG Target Preferences Setup

=10/ x|

=t

BuildOptions DEPTatPky.BuildOptions

CCELink DSPTotPky. C2800CC5LInk
CCSHandleMame CCS_0Ohj
ExportCCEHandle [True
CodeGeneration DEPTatPky.C2800CodeGenearation
DEPBoard DSPTatPky.eZdspF2808DSPBoard

CCSHandleName

Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and
MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it

4-193

F2808 eZdsp

is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this is
set to True (the default), then after you build your model, you will
see the CCS object in your MATLAB workspace browser with the
name you provided and class type ccsdsp.

CodeGeneration — Scheduler

£ DSPTGTPKG Target Preferences Setup]
BuildOptions DEPTatPky.BuildOptions
CCELink DEPTotPky.C2800CCSLink
= CodeGeneration DEPTatPky.C2800CodeGenearation
Scheduler DSPTatPky.C28005cheduler

Algorithm :l Preermptive_priarity_based

Tirner =|cPu_timern
DSPBoard DEPTautPky.eZdspF2808DE5PBoard
Algorithm

Algorithm to use for scheduling. The algorithm options are

® Preemptive priority based — This scheduler runs based
on the timer interrupt. The timer period is set based on
the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest group
(the base rate task) runs first and other tasks run in the order
determined by their sample rates from faster tasks to slower
tasks. For more information, see Models with Multiple Sample
Rates in the Real Time Workshop documentation.

4-194

F2808 eZdsp

® Free_running — This scheduler does not use any interrupts.
Tasks run in priority-based order and the execution of each
task depends only on how fast the task can run on the given
processor. This algorithm does not support preemption or
multitasking. (Selecting MultiTasking as the Tasking mode
in Configuration Parameters-Solver is not allowed for this
scheduling.) Overruns do not occur with this type of scheduling,
so any value in BuildOptions — RuntimeOptions
OverrunAction is ignored.

Timer
CPU timer to use for scheduling.

4-195

F2808 eZdsp

4-196

DSPBoard

- DSPBoard
CEFPEoardLahel
DSPChip
- ADC

—ACQ_P3
— ADCLKPS
— CP5

— OffzetCarrectionifalue

— DSPChipLabel
[AR _A

— BaudRatePrescaler
— EnhancedCANMode
— SAM

— SBG

— S

— SelfTesthode

— TSEG1

L TEEG2

- eCAMN_B

— BaudRatePrescaler
— EnhancedZAMMOde
— PinAssignment_Rx

— PinAssignment_Tx

— A

— SBG

— BV

— SelfTestMode

— TSEG1

L TEEG2

[=1— e PV

— PinAssignment_SYMCI
— PinAssignment_SYNCO
— PinAssignment_TZ5

— PinAssignment_TZ6

— ExternalReferenceSelector

DEPTutPky.eZdspF2a80805FPBoard

F2808 eldsp

DEPTotPky.C280803FPChip

DSPTotPky C280:ADC
w4
>3
|1
ﬂFaIse
0

jTI TM3320C2808
DSPTgtPky.eCAN
10

WTrue

ﬂSample_one_time

:IOnI\,r_faIIing_edges

>z

lIFalse

>|6

Rk
DEPTatPky.e CANE
10

WTrue

:INDFIE

ﬂNone

:ISample_Dne_time

jOnI\,r_faIIing_edges

P
ﬂFaIse
>|6
Rk
DSPTotFkg. e Py
:INDFIE
ﬂNone
:INDFIE
ﬂNone

F2808 eZdsp

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match the label (name) of the
board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

DSPChipLabel
DSP chip model. All supported C2000 chips are listed. For
the F2808 eZdsp board, the selected value defaults to TI
TMS320C2808. If you select a different chip model, an error will be
generated in code generation.

ADC
The internal timing of the ADC module is controlled by the
high-speed peripheral clock (HSPCLK). The ADC operating clock
speed is derived in several prescaler stages from the HSPCLK
speed. The following are the settable parameters for the ADC
clock prescaler:

ACQ_PS
This value does not actually have a direct effect on the ADC
module’s core clock speed. It serves to determine the width
of the sampling/acquisition period. The higher the value,
the wider the sampling period. The default value is 4.

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first
step in deriving the ADC module’s core clock speed. The
default value is 3.

4-197

F2808 eZdsp

CPS
After the HSPCLK speed is divided by the ADCLKPS
value, the result will be further divided by 2 if the CPS
parameter is set to 1, which is the default.

ExternalReferenceSelector
By default, an internally generated bandgap voltage
reference is selected to supply the ADC logic. However,
depending on application requirements, the ADC logic may
be supplied by an external voltage reference. Choose True
to use an external voltage reference.

OffsetCorrectionValue
The 280x ADC supports offset correction via a 9-bit value
that will be added or subtracted before the results are
available in the ADC result registers. Timing for results is
not affected. The default value is 0.

eCAN_A
The settable parameters are

BaudRatePrescaler
Value by which to scale the bit rate. Valid values are from
1 to 256.

EnhancedCANMode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The
default is True. Setting this parameter to False enables
only standard mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample _one_time samples
once at the sampling point. Selecting Sample three times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

4-198

F2808 eZdsp

SBG
Sets the message resynchronization triggering.
Options are Only falling edges and
Both_falling and_rising edges.

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If True, sets the eCAN module to loopback mode, where
a “dummy” acknowledge message is sent back without
needing an acknowledge bit. The default is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
BaudRatePrescaler, determines the length of a bit on the
eCAN bus. TSEG1 must be greater than TSEG2 and the
Information Processing Time (IPT). The IPT is the time
needed to process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1
are from 1 through 16.

TSEG2
Sets the value of time segment 2 (PHASE_SEG2), which,
with TSEG1 and BaudRatePrescaler, determines the
length of a bit on the eCAN bus. TSEG2 must be less than
or equal to TSEG1 and greater than or equal to IPT. Valid
values for TSEG2 are from 1 through 8.

eCAN_B
The settable parameters for the eCAN_B module include all the
parameters for the eCAN_A module plus the following parameters
which only apply when you are using the eCAN_B module:

PinAssignment_Rx

Assigns the CAN receive pin to use with the eCAN_B module.
Possible values are GPI010, GPI013, GPI017, and GPI021.

4-199

F2808 eZdsp

PinAssignment_Tx
Assigns the CAN transmit pin to use with the eCAN_B
module. Possible values are GPI08, GPI012, GPI016, and
GPIO20.

ePWM
Assigns ePWM signals to GPIO pins, if required.

PinAssignment_SYNCI
Assigns the ePWM external sync pulse input (SYNCI) to
a GPIO pin. Choices are None (the default), GPI06, and
GPIO32.

PinAssignment_SYNCO
Assigns the ePWM external sync pulse output (SYNCO)
to a GPIO pin. Choices are None (the default), GPI06, and
GPIO33.

PinAssignment_TZ5
Assigns the trip-zone input 5 (TZ5) to a GPIO pin. Choices
are None (the default), GPI016, and GPI028.

PinAssignment_TZ6
Assigns the trip-zone input 6(TZ6) to a GPIO pin. Choices
are None (the default), GPI017, and GPI029.

See Also C280x ADC, C280x eCAN Receive, C280x eCAN Transmit, C280x
ePWM, C280x eQEP, C280x Hardware Interrupt, Idle Task

4-200

F2812 eZdsp

Purpose
Library

Description

F2812 eZdsp

F2812 eZdsp DSK target preferences
c2000tgtpreflib in Embedded Target for TI C2000 DSP

Options on the block mask let you set features of code generation
for your Spectrum Digital F2812 eZdsp target. Adding this block to
your Simulink model provides access to building, linking, compiling,
and targeting settings you need to configure the code that Real-Time
Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

4-201

F2812 eZdsp

Dialog BuildOptions
Box

DSPTGTPKG Target Preferences Setup 10| =|
= BuildOptions DEPTatFkg.BuildOptions

- CampilerOptions DSPTgtPkg.CompilerOptions
— Campilererhosity :I\-"EHJDSE
— KeepAShFiles @|Faise
— OpfimizationLevel = Functiont-02)
— SymbolicDebuaging j‘r‘es
= LinkerOptions DEPTatFkg.LinkerOptions
— CreateMAPFile [True
- KeepOB.JFiles [True
~— LinkerCMDFile | Fuil_mermory_map
— LinkerCmdFileMame null
= RunTimeQptions DEPTOtFkg. RunTimeOptions
— BuildAction :lEluild_and_execute
L OwverrunAction joontinue
[+— ZCELink DSPTotPkg. C2800CCSLInk
[+ CodeGeneration DSPTotPko. C2800CodeGeneration
+— DSPBoard DEPTatFky.eZdspF28120D8FEBoard

_o |

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs.
Options are

® Verbose — Returns all compiler messages.
® Quiet — Suppresses compiler progress messages.
® Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after
creation. The default is false — .asm files are not kept in your

4-202

F2812 eZdsp

current directory. If you choose to keep the .asm files, set this
option to true.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-02).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True — the listing is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object files to generate a single executable common object file
format (COFF) file that you run on the target DSP. The object
files are saved to your current project directory. Saving your .obj
files can speed up the compile process by not having to recompile
files that you have not changed. The default is True — the .obj
files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility.
Linker command file types are

4-203

F2812 eZdsp

4-204

e Internal _memory_map — Uses the small memory model on the
target, which requires that all sections of the code and data fit
into the memory available only on the F2812 DSP chip (minus
the flash memory).

e Full memory map — Uses the large memory model on the
target, which does not restrict the size of the code and data
sections to DSP memory only. Your data can use the storage
space up to the limits of the board.

e Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. Note that the software does not
verify that the commands in this file are correct. Note that if
you use Internal memory _map or Full memory_map, specifying
a Custom_file has no effect.

When you select the Internal memory map option, the Embedded
Target for TI C2000 DSP specifies that only the available internal
memory on the F2812 is used.

If you select Internal memory map, but your data or
program requires far calls, the TI compiler returns
an error message like the following in the CCS IDE:

error: can't allocate '.far'
or
error: can't allocate '.text'

indicating that your data does not fit in internal memory or that
your code does not fit in internal memory. To eliminate these
errors, select Full_memory_map. Note that your program might
run more slowly than if you use the internal map option.

F2812 eZdsp

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The
actions are cumulative — each listed action adds features to the
previous action on the list and includes all the previous features:

® Generate_code only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the T
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and

many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create CCS_Project for the build action.

® Create CCS_Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

® Build — Builds the executable COFF file, but does not
download the file to the target.

e Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This is the default.

4-205

F2812 eZdsp

4-206

Note When you build and execute a model on your target,
the Real-Time Workshop build process resets the target
automatically. You do not need to reset the board before
building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs.

® Continue — Ignore overruns encountered while running the
model. This is the default.

® Halt — Stop program execution.

CCSLink
% DSPTGTPKG Target Preferences Setup ;[Qlil
BuildOptions DEPTatPky.BuildOptions
CCSLink DSPTotPky.C2800CCSLink
CCSHandleMame CCE_0hj
ExporiCCSHandle [True
CodeGeneration DSPTatPky.C2800CodeGeneration
DSPBoard DEPTatPky.eZdspF28120D8FEBoard

CCSHandleName
Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and

F2812 eZdsp

MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this
is set to true, after you build your model, you will see the CCS
object in your MATLAB workspace browser with the name you
provided and class type ccsdsp.

CodeGeneration — Scheduler

% DSPTGTPKG Target Preferences Setup ;[Qlil
BuildOptions DEPTatPky.BuildOptions
CCSLink DSPTotPky.C2800CCSLink
= CodeGeneration DEPTatPky.C2800CodeGenearation
Scheduler DSPTatPky.C28005cheduler

Algarithrm :l Preemptive_priarity_hased

Tirner =|cPu_timern
DSPBoard DEPTautPky.eZdspF2812D5PBoard
Algorithm

Algorithm to use for scheduling. The algorithm options are

® Preemptive priority based — This scheduler runs based
on the timer interrupt. The timer period is set based on
the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest
group (the base rate task) runs first and other tasks run in
the order determined by their sample rates from faster tasks

4-207

F2812 eZdsp

4-208

Timer

to slower tasks. For more information, see the Models with
Multiple Sample Rates section of the Real Time Workshop
documentation.

Free_running — This scheduler does not use any interrupts.
Tasks run in priority-based order and the execution of each
task depends only on how fast the task can run on the given
processor. This algorithm does not support preemption or
multitasking. (Selecting MultiTasking as the Tasking mode
in Configuration Parameters-Solver is not allowed for this
scheduling.) Overruns do not occur with this type of scheduling,
so any value in BuildOptions — RuntimeOptions
OverrunAction is ignored.

CPU timer to use for scheduling.

F2812 eZdsp

DSPBoard

- DSPBoard

DEFBoardLabel

DSPChip

- ADC

—ACO_PS

— ADCLKFPS

.- CPS

— DSPChipLabel

- SCl

— BaudRate

— CharacterLengthBits
— EnableLoopBack
— EnabileParity

— NumhberOfStopBits
— Parityhdade

— Suspensionhode
— UARTInterface

= 5FI

— BaudRateFactor

— ClockPhase

— ClockPalarity

— DataBits

— EnableFIFO

— EnableLoophack
— FIFOMurmhers

— FIFOTransmitDelay
— hfade

— Suspensionhode
[eCAN

— BaudRateFrescaler
— EnhancedCANMode
— A

— SBG

— BV

— SelfTestMode

— TEEG1

- TSEGZ

DEPTatPky.eZdspF 281 205PBoard

F2812 eZdsp

DEPTotPky.C281205PChip

DSPTotPky.ADC

>|TiTME32002812
DSPTotPka.5CI

| as00
~|sa
ﬂFaIse
lIFalse
=1
:lE\ten

| got_akort
:lRaw_data

DEPTotPky.C28005FI

127
ﬂNo_deIay
:IRising_edge
=18
lIFalse
ﬂFaIse
~|1

a
:IMaster
jFree_run

DSPTotPky.eCAMN
10
WTrue
:ISampIe_Dne_time
jOnI\,r_faIIing_edges
>z
ﬂFaIse
~|sa
|6

4-209

F2812 eZdsp

4-210

DSPBoardLabel

Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match exactly the label (name) of
the board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

DSPChipLabel

SCI

DSP chip model. Select the DSP chip installed on your target.
The chip model is fixed for the F2812 eZdsp. If you change the
chip model, an error will be generated in code generation.

Parameters that affect the serial communications interfaces (SCI)
on the target. The settable parameters are:

BaudRate
Baud rate for transmitting and receiving data.

CharacterLengthBits
Length in bits from 1 to 8 of each transmitted/received
character.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this is enabled, a C28x
DSP’s Tx pin is internally connected to its Rx pin and it can
transmit data from its output port to its input port to check
the integrity of the transmission.

EnableParity
Select True to enable parity checking on the transmit/receive
data.

F2812 eZdsp

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Available selections are 0dd parity
or Even parity. Enable Parity must be set to True to use
the selected ParityMode.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard abort, Soft abort, and Free run. Hard
abort stops the program immediately. Soft abort stops
when the current receive/transmit sequence is complete.
Free run continues running regardless of the breakpoint.

UARTInterface
Protocol to use when sending or receiving UART mode
data. Although available protocols are Raw_data and
To/From_host_block, only Raw_data is supported.
Raw_data sends or receives all data in its raw format, one
byte at a time. Since the C28x SCI module has a 16-byte
FIFO buffer, both the C28x SCI Receive and Transmit blocks
can receive/transmit scalar or vector data.

To/From_host_block is not supported currently and

is provided only for use in demos. It uses the serial
communication interface to communicate with host-side SCI
blocks. It attempts to read and interpret a specified number
of elements via a for loop using internal protocol.

SPI
Parameters that affect the serial peripheral interfaces (SPI) on
the target. The settable parameters are:

4-211

F2812 eZdsp

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Whether the data is output immediately (No_delay) or
delayed by a half clock cycle (Delay half cycle) with
respect to the rising edge.

ClockPolarity
Whether the data is output at the Rising edge or
Falling edge of the system clock.

DataBits
Length in bits from 1 to 16 of each transmitted/received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28", If you send data
greater than this value, the buffer overflows.

EnableFIFO
Select True to enable the FIFO buffers in the SPI module.

EnableLoopBack
Select True to enable the loopback function for self-test
and diagnostic purposes only. The SPI must be in master
mode to use loopback. When this is enabled, a C28x DSP’s
SIMO/SOMI lines are connected internally.

FIFONumbers
Enter the number of FIFO buffers to enable. You can specify
1 to 16 buffers.

FIFOTransmitDelay
Amount of time in target clock cycles to pause between data
transmissions.

Mode
Whether to run the SPI module in Master or Slave mode.
Master mode initiates the transmission. Slave mode is

4-212

F2812 eZdsp

triggered by another master SPI and is synchronized to the
clock used by the master SPI. Note that this option cannot
be changed at run-time.

SuspensionMode
Suspension to use when debugging your program with
Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard abort, Soft abort, and Free run. Hard
abort stops the program immediately. Soft abort stops
when the current receive/transmit sequence is complete.
Free run continues running regardless of the breakpoint.

eCAN
Parameters that affect the extended control area network (eCAN)
module. Most of these parameters affect the eCAN bit timing.

eCAN Bit Timing

The eCAN protocol divides the nominal bit time into four
segments, which are reflected in the settable parameters below.
The four segments are

- SYNCSEG — Time used to synchronize the nodes on the bus.
It is always one time quantum (TQ), which is defined as

TQ - BaudRatePrescaler
SYSCLEK

where SYSCLK is the CAN module system clock frequency, and
the BaudRatePrescaler is defined below.

- PROP_SEG — Time used to compensate for physical delays
in the network

- PHASE_SEG1 — Phase used to compensate for positive edge
phase error

4-213

F2812 eZdsp

- PHASE_SEG2 — Phase used to compensate for negative

edge phase error

The eCAN bit timing is shown in the following illustration.

. Hominal kit fime

Lt TSEGT

SYNGSEG |<—SJ'|'|'—I-

e—si—»

e ——SE————

i

T | 1 |

Tronzmat
paini

Calculating Baud Rate

The length of a bit in the CAN module is determined by TSEG1,
TSEG2, and BaudRatePrescaler parameters. The baud rate is

Sample
poinl

SYSCLK

BaudRate =

where

“BitTime = TSEGI+TSEG2+1”

BaudRatePrescaler =« BitTime

The following table shows the corresponding baud rates (for a

150-Mhz clock as on the F2812 DSP) for the indicated parameter

settings.

4-214

F2812 eZdsp

BaudRate
TSEG1 | TSEG2 | Prescaler | SJW | SBG | Baud Rate
8 6 20 2 0 0.5 Mbit/s
8 6 10 2 0 1 Mbit/s
8 6 5 2 0 2 Mbit/s

For additional details, refer to the 280x Enhanced Controller Area
Network (eCAN) Reference Guide, Literature Number SPRU074C,
on the Texas Instruments Web site.

The settable eCAN parameters are:

BaudRatePrescaler
Value by which to scale the bit rate. Valid values are
from 1 to 256. As noted in the equation above, this value
determines the value of TQ.

EnhancedCANMode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The
default is True. Setting this parameter to False enables
only standard mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample three times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

SBG
Sets the message resynchronization triggering.
Options are Only falling edges and
Both_falling and_rising edges.

4-215

F2812 eZdsp

See Also

4-216

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If True, sets the eCAN module to loopback mode, where
a “dummy” acknowledge message is sent back without
needing an acknowledge bit. The default is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2
and BRP, determines the length of a bit on the eCAN
bus. TSEG1 must be greater than TSEG2 and the
Information Processing Time (IPT). The IPT is the time
needed to process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1
are from 1 through 16.

TSEG2
Sets the value of time segment 2 (PHASE_SEG2), which,
with TSEG1 and BRP, determines the length of a bit on the
eCAN bus. TSEG2 must be less than or equal to TSEG1
and greater than or equal to IPT. Valid values for TSEG2
are from 1 through 8.

C281x ADC, C281x eCAN Receive, C281x eCAN Transmit, C281x PWM

Float to IQN

Purpose

Library

Description

[Qmath

.

ICN

o

Float to QN

Dialog
Box

See Also

Convert floating-point number to IQ number
tiigmathlib in Embedded Target for TI C2000 DSP

This block converts a floating-point number to an IQ number. The Q
value of the output is specified in the dialog.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: Floakt to I0N K|

— Float ta [QM [maszk] [link]

Thiz block converts a floating-paint input ta the equivalent [0 value. The
input iz a single-precizsion floating-paint number and the output is a signed
32-bit fixed-point number. The respective 10 function is selected bazed
on the O walue specified for the autput.

— Parameters
0 walue:

0k I Cancel | Help | Apply |

Q value
Q value from 1 to 30 that specifies the precision of the output

Absolute IQN, Arctangent IQN, Division IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x
int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x
IQN2, Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

4-217

Fractional part IQN

Purpose

Library

Description

[Qmath

.

IQMfrac

'

Fractional part IQN

Dialog
Box

See Also

4-218

Fractional part of IQ number
tiigmathlib in Embedded Target for TI C2000 DSP

This block returns the fractional portion of an IQ number. The returned
value is an IQ number in the same I1Q format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: Fractional part I0N K|

Fractional part IGM [mask] (link]

Thiz block returns the fractional part of an 18 number. Both the input and
output are zigned 32-bit fixed-point numbers. The respective 10Mrac
function i selected based on the O value.

QK I Cancel | Help | Appl |

Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to
Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude
IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

Fractional part IQN x int32
|

Purpose Fractional part of result of multiplying IQ number and long integer
Library tiigmathlib in Embedded Target for TI C2000 DSP
Description This block multiplies an IQ input and a long integer input and returns
N Grat the fractional portion of the resulting IQ number.
Yh
B IQMmpyl32frac

——" Note The implementation of this block does not call the corresponding
part

IQN x int32 Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Dialog Block Parameters: Fractional part IDN 2| k|
Box Fractional part [QN = int32 [mask) [link]

Thiz block multiplies an [Q number with a long integer number and returns
the fractional part of the result. First input and the output are signed 32-bit
fixed-point numbers, while the second input iz a long integer number. The
rezpective [QMmpyl32frac function is selected based on the O value of
the input.

QK I Cancel | Help | Appl |

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fecn IQN

4-219

From Memory

Purpose Retrieve data from target memory

Library €c2400spchiplib or c280xspchiplib or c281xspchiplib in Embedded
Target for TT C2000 DSP

Description This block retrieves data of the specified data type from a particular
memory address on the target.

Frorm fwke oy

Read Fmn ey Note Although the block dialog box shown here is for the C24x, the
same block and dialog box apply to the C280x and the C281x.

o
Dlalog [=1Block Parameters: C24x From Memory e |
Box —From Memary [mazk] [link]
Read from zequential locations of the target memary starting at specified start address.

—Parameters

Memom address [hew):
|a000000A

Data bype: | uint32 ﬂ
Sample time:

f1

Samplez per frame;

1

0K Cancel Help | Apply |

Memory address
Address of the target memory location, in hexadecimal, from
which to read data.

4-220

From Memory

Note To ensure the correct operation of this block, you must
specify exactly the desired memory location. Refer to your Linker
CMD file for available memory locations.

Data type
Data type of the data to obtain from the above memory address.
The data is read as 16-bit data and then cast to the selected data
type. Valid data types are double, single, int8, uint8, int16,
uint16, int32, and uint32.

Sample time
Time interval, in seconds, between consecutive reads from the
specified memory location.

Samples per frame
Number of elements of the specified data type to be read from the
memory region starting at the given address.

See Also To Memory

4-221

From RTDX

Purpose
Library

Description

Frorn RTC
ichan

Frorn RTC

4-222

Add RTDX input channel
rtdxBlocks in Embedded Target for TI C2000 DSP

When you generate code from Simulink in Real-Time Workshop with
a From RTDX block in your model, code generation inserts the C
commands to create an RTDX input channel on the target. Input
channels transfer data from the host to the target.

The generated code contains this command:

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

Note From RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
any operations, except generating an output matching your specified
initial conditions.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.
2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

4 Use the readmsg and writemsg functions in MATLAB to send and
retrieve data from the target over RTDX.

From RTDX

Dialog
Box

E! Source Block Parameters: From RTDX

—From RTOM [magk] (link)]

Usze specified RTDM channel to send data from host bo target DSP. In
blocking rode, the DSP waits for new data from the block. [n
non-blocking mode, the DSP uses previous data when new data is not
available from the block.

—Parameters

Channel name
Iichan'l

" Enable blocking mode
Initial conditions:

i

Sample Time

1754

Output dimenzsions

fi54 1]

¥ Frame-based

D ata type: | double LI
¥ Enable RTDM channel on start-up

ak. LCancel | Help

Channel name

Name of the input channel to be created by the generated code.
The channel name must meet C syntax requirements for length

and character content.

Enable blocking mode

Blocking mode instructs the target processor to pause processing
until new data is available from the From RTDX block. If you
enable blocking and new data is not available when the processor
needs it, your process stops. In nonblocking mode, the processor
uses old data from the block when new data is not available.

4-223

From RTDX

Nonblocking operation is the default and is recommended for
most operations.

Initial conditions
Data the processor reads from RTDX for the first read. If blocking
mode is not enabled, you must have an entry for this option.
Leaving the option blank causes an error in Real-Time Workshop.
Valid values are 0, null ([]), or a scalar. The default value is 0.

0 or null ([]) outputs a zero to the processor. A scalar generates
one output sample with the value of the scalar. If Output
dimensions specifies an array, every element in the array has
the same scalar or zero value. A null array ([]) outputs a zero
for every sample.

Sample time
Time between samples of the signal. The default is 1 second. This
produces a sample rate of one sample per second (1/Sample time).

Output dimensions
Dimensions of a matrix for the output signal from the block. The
first value is the number of rows and the second is the number
of columns. For example, the default setting [1 64] represents
a 1-by-64 matrix of output values. Enter a 1-by-2 vector for the
dimensions.

Frame-based
Sets a flag at the block output that directs downstream blocks
to use frame-based processing on the data from this block. In
frame-based processing, the samples in a frame are processed
simultaneously. In sample-based processing, samples are
processed one at a time. Frame-based processing can increase
the speed of your application running on your target. Note that
throughput remains the same in samples per second processed.
Frame-based operation is the default.

Data type
Type of data coming from the block. Select one of the following

types:

4-224

From RTDX
|

® Double — Double-precision floating-point values. This is the
default. Values range from -1 to 1.

® Single — Single-precision floating-point values ranging from
-1 to 1.

® Uint8 — 8-bit unsigned integers. Output values range from 0
to 255.

® Int16 — 16-bit signed integers. With the sign, the values range
from -32768 to 32767.

e Int32 — 32-bit signed integers. Values range from -23' to
(281-1).

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function in the Link for Code Composer Studio Development Tools
to prepare your RTDX channels. This option applies only to the
channel you specify in Channel name. You do have to open the
channel.

See Also ccsdsp, readmsg, To RTDX, writemsg.

4-225

Idle Task

Pu rpose Create free-running task that executes downstream subsystem
Library c280xspchiplib or c281xspchiplib in Embedded Target for TI C2000
DSP
Description The Idle Task block, and the subsytem to which it is connected, specify
one or more functions to execute as background tasks. By definition, all
0 tasks executed through the Idle Task block are of the lowest priority,
ke Task lower than that of the base rate task.

Idke Task

Vectorized Output

The output of this block includes a set of two vectors, the Number of
tasks and the corresponding Preemption flag(s). The Preemption
flag(s) vector must be the same length as the Number of tasks vector
unless it has only one element.

If the Preemption flag(s) vector does have one element, then that
value applies to all functions in the downstream subsystem.

If the Preemption flag(s) vector has the same number of elements as
the Number of tasks vector, then each task’s preemption flag value
is the value of the corresponding element in the Preemption flag(s)
vector.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

4-226

Idle Task

Dialog
Box

E Source Block Parameters: Idle Task x|

—Idle T azk Block [magk] (link)

Create a free-running tazk which will execute the downztream
subsystemn.

—Parameters
Mumber of tagks:
[12]
Preemption flaglz): preemptable-1, non-preemptable-0
[(11]

[~ Manage own timer

[~ Enable simulation input:

ok I Cancel | Help |

Number of tasks
The values you enter determine the order in which the functions in
the downstream subsystem are to be executed, while the number
of values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the

number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be

from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem will be executed,
and so on.

For example, if you enter [2,3,1] in this field, you are indicating
that there are three functions to be executed, and that the third
function will be exectuted first, the first function will be executed
second, and the second function will be executed third.

4-227

Idle Task

When all functions have been executed, the Idle Task block cycles
back and repeats the execution of the functions in the same order.

Preemption flag(s)
The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, so if you
flag one of these functions as non-preemptable, its execution will
not be suspended by another task even though the functions in the
downstreasm subsystem all have the lowest priority by definition.

Enter either a vector of one element, in which case that
preemption flag applies to all functions to be executed in the
downstream subsystem, or a vector containing the same number
of elements as the Number of tasks vector, in which case
each preemption flag values applies to the task number in the
corresponding position within its vector. All preemption flag
values must be either 0 (non-preemptable) or 1 (preemptable).

Manage own timer
Some Simulink blocks need to keep track of time in order to
function properly. Select this check box if your model contains
such a block in the downstream subsystem.

Enable simulation input
Select this check box to make it possible to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

See Also C280x Hardware Interrupt, C281x Hardware Interrupt

4-228

Integer part IQN

Purpose
Library

Description

[Qmath

IQMint
Integer part IQN

Dialog
Box

See Also

T

Integer part of IQ number
tiigmathlib in Embedded Target for TI C2000 DSP

This block returns the integer portion of an IQ number. The returned
value is a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: Integer part IQN |

Integer part IOM [mask] (link]

Thiz block returns the integer part of an 10 number. The input iz a signed
32-bit fiwed-point number and the output iz a long integer number, The
rezpective [QMint function is selected based on the O value.

QK. I Cancel | Help | Apply |

Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN x int32,

IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

4-229

Integer part IQN x int32

Purpose
Library

Description

10 math

B
IQNmpyl32int

Irmteger part
QN x int32

Dialog
Box

See Also

4-230

A
Yp

Integer part of result of multiplying IQ number and long integer
tiigmathlib in Embedded Target for TI C2000 DSP

This block multiplies an IQ input and a long integer input and returns
the integer portion of the resulting IQ number as a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: Integer part IQN x ink |
Integer part 10 » int32 [mask] [link)

Thiz block multiplies an [Q number with a long integer number and returns
the inteqer part of the result. First input iz a signed 32-bit fised-paoint
number, while the second input and the output are long integer number,
The respective IQNmpyl 32int function is selected based on the O value of
the input.

QK. I Cancel | Help | Apply |

Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fen IQN

Inverse Park Transformation

Purpose

Library

Description

Vd oc
Vg

theta [Park

Vap

Vbp

Inverse Park

Transformation

Convert rotating reference frame vectors to two-phase stationary
reference frame

c28xdmclib in Embedded Target for TI C2000 DSP

This block converts vectors in an orthogonal rotating reference frame to
a two-phase orthogonal stationary reference frame. The transformation
implements these equations

Va

Vdcoz8—Vgsing

Vb

Vd =inf + Vgcos8

and is illustrated in the following figure.

YWa W =coso d

The inputs to this block are the direct axis (Vd) and quadrature axis (Vq)
components of the transformed signal in the rotating frame and the
phase angle (theta) between the stationary and rotating frames.

The outputs are the direct axis (Va) and the quadrature axis (Vb)
components of the transformed signal.

4-231

Inverse Park Transformation

Dialog
Box

References

See Also

4-232

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

E! Block Parameters: Inverse Park Transformat 2=

Inwerze Park Transformation [magk]

Thiz block performs wector transformation from arthogonal ratating reference frame into
orthogonal stationary frame, Al inputs and outputs are gigned 32-bit fiked-point
nurnbers with O value bebween 1 and 29

Cancel | Help | Apply |

Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRCO080, available at the
Texas Instruments Web site.

Clarke Transformation, Park Transformation, PID Controller, Space
Vector Generator, Speed Measurement

IQN to Float

Purpose

Library

Description

I NtoF

10 math

Y

QM to Float

Dialog
Box

See Also

Convert I1Q number to floating-point number
tiigmathlib in Embedded Target for TI C2000 DSP

This block converts an IQ input to an equivalent floating-point number.
The output is a single floating-point number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: IQN ko Float £

IGM ta Flaat [maszk] [link]

Thiz block converts an |0 number ta the eguivalent floating-paint value in
|IEEE 754 format. The input iz a gigned 32-bit fiwed-point number and the
output iz a single-precizsion loating-paint number. The respective [DMNtaF
function i selected based on the O value,

QK. I Cancel | Help | Apply |

Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

4-233

IQN x int32

Purpose
Library

Description

IQmath

A
Yp
B

1M mpyl32
QN x int32

Dialog
Box

See Also

4-234

Multiply IQ number with long integer
tiigmathlib in Embedded Target for TI C2000 DSP

This block multiplies an IQ input and a long integer input and produces
an IQ output of the same Q value as the 1Q input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: IQN % int32 £

QM % int32 [mask] (link]

Thiz block multiplies an [0 nurmber with a long integer. First input and the
output are signed 32-bit fized-point numbers, while the second input is a
long integer number. The respective IDNmpYl 32 function iz selected
bazed on the O value of the first input,

QK. I Cancel | Help | Apply |

Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

IQN x |

QN

Purpose
Library
Description
|Qmath
NA
¥
13N mpy
QM x IQN
Dialog
Box

Multiply two IQ numbers with same Q format
tiigmathlib in Embedded Target for TI C2000 DSP

This block multiplies two IQ numbers. Optionally, it can also round and
saturate the result.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: IQN x IQN |
10N % QM [mask] (link]

Thiz block multiplies bwa |G numbers that are reprezented in same 10
format. Depending on the multiplication option zelected belov, the result
can also be rounded or saturated. All inputs and outputs are signed 32-bit
fired-point nurmbers. The respective IQNmpy function is zelected bazed
on the [walue.

— Parameters

Multiply option |-.-1|_4|ti|:.|_|,. vI
(] I Cancel | Help | Apply |

Multiply option
Type of multiplication to perform:

® Multiply — Multiply the numbers.

® Multiply with Rounding — Multiply the numbers and round
the result.

® Multiply with Rounding and Saturation — Multiply the
numbers and round and saturate the result to the maximum
value.

4-235

IQN x IQN

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

4-236

IQN1 to IQN2

Purpose
Library

Description

[Qmath

. W

QNI QX
IQMNT to QN2

Dialog
Box

See Also

Convert 1Q number to different Q format
tiigmathlib in Embedded Target for TI C2000 DSP

This block converts an IQ number in a particular Q format to a different
Q format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: IQN1 to IQNZ K|
IGENT ta QN2 [mask] (link]

Thiz block converts an 10 number to a new 10 number in specified 0
format. Both the input and output are signed 32-bit fisved-point numbers.
The respective [QMNtolQx function iz selected based on the @ value.

— Parameters
0 walue:

10

QK. I Cancel | Help | Apply |

Q value
Q value from 1 to 30 that specifies the precision of the output

Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

4-237

IQN1 x IQN2

Purpose
Library

Description

IQmath

A
Yp
B

IQMNmpy Q=
QN1 x IQN2

Dialog
Box

See Also

4-238

Multiply two IQ numbers with different Q formats
tiigmathlib in Embedded Target for TI C2000 DSP
This block multiples two IQ numbers when the numbers are represented

in different Q formats. The format of the result is specified in the dialog
box.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: IQN1 x IQNZ £
IENT % QM2 [mazk] [link]

Thiz block multiplies bwo |G numbers that are reprezented in different 10
format. All inputs and outputs are signed 32-bit fixed-point numberz. The
rezpective IONmpylE function is selected based on the O value
specified for the autput.

— Parameters
0 walue:

QK I Cancel | Help | Apply |

Q value
Q value from 1 to 30 that specifies the precision of the output

Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQNZ2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fen IQN

LF2407 eZdsp

Purpose LF2407 eZdsp DSK target preferences
Library c2000tgtpreflib in Embedded Target for TI C2000 DSP
Description Options on the block mask let you set features of code generation for

your Spectrum Digital LF2407 eZdsp target. Adding this block to
your Simulink model provides access to building, linking, compiling,
and targeting settings you need to configure the code that Real-Time
LF2407 eZdsp Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

Dialog 4. DSPTGTPKG Target Preferences Setup 10| =|
Box = BuildOptions DSPTgtPkg. BuildOptions

- CampilerOptions

— Campilererhosity
— KeepASMFiles

— DptimizationLewvel

— SymbolicDebugging
= LinkerOptions

— CreatetdAPFile

— KeeplBJFiles

— LinkerCMDFile

L LinkerCmedFileMame

DSPTgtPkg.CompilerOptions

:IVerbuse
ﬂFaIse
:IFunctiDn(—DE)
j‘r‘es
DEPTatFkg.LinkerOptions
WTrue
WTrue
:IFuII_memnry_map
null

= RunTimeQptions DEPTOtFkg. RunTimeOptions
— BuildAction :lEluild_and_execute
L OwverrunAction joontinue
[+ CCSLink DSPTotPkg.C2800CCSLInk
[+ CodeGeneration DSPTotPko. C2800CodeGeneration
+— DSPBoard DEPTatFky.eZdspF28120D8FEBoard

_o |

4-239

LF2407 eZdsp

4-240

BuildOptions — CompilerOptions

Compiler Verbosity

Amount of information the compiler returns while it runs.
Options are

® Verbose — Returns all compiler messages.
® Quiet — Suppresses compiler progress messages.

® Super_quiet — Suppresses all compiler messages.

KeepASMFiles

Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after
creation. The default is false — .asm files are not kept in your
current directory. If you choose to keep the .asm files, set this
option to true.

OptimizationLevel

Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TT C2000 DSP sets the
optimization to Function(-02).

SymbolicDebugging

Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile

Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True — the listing is produced.

LF2407 eZdsp

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object (.obj extension) files to generate a single executable
common object file format (COFF) file that you run on the target
DSP. The object files are saved to your current project directory.
Saving your .obj files can speed up the compile process by not
having to recompile files that you have not changed. The default
is True — the .obj files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility.
Linker command file types are

® Internal_memory_map — Although this option is supported,
only very small programs that will fit in the internal chip
memory can be used. If your program is too large, a linker
error will occur. In general, you should use Full memory map
or Custom_file.

e Full memory map — Uses the large memory model on the
target, which does not restrict the size of the code and data
sections to DSP memory only. Your data can use the storage
space up to the limits of the board.

® Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. Note that the software does not
verify that the commands in this file are correct. Note that if
you use Internal memory _map or Full memory_map, specifying
a Custom_file has no effect.

When you select the Internal memory map option, the
Embedded Target for TI C2000 DSP specifies that only the
available internal memory on the LF2407 is used.

4-241

LF2407 eZdsp

4-242

If you select Internal_memory_map, but your data or program
requires far calls, the TI compiler returns an error message like
the following in the CCS IDE:

error: can't allocate '.far'
or
error: can't allocate '.text'

indicating that your data does not fit in internal memory or

your code or program do not fit in internal memory. To eliminate
these errors, select Full_memory_map. Note that your program
might run more slowly than if you use the internal map option.

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The
actions are cumulative — each listed action adds features to the
previous action on the list and includes all the previous features:

® Generate _code _only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the TT
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and

many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create CCS_Project for the build action.

® Create CCS Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number

LF2407 eZdsp

option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

® Build — Builds the executable COFF file, but does not
download the file to the target.

® Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This is the default.

Note When you build and execute a model on your target,
the Real-Time Workshop build process resets the target
automatically. You do not need to reset the board before
building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs.

® Continue — Ignore overruns encountered while running the
model. This is the default.

® Halt — Stop program execution.

CCSLink
g DSPTGTPKG Target Preferences Setu ;[Qlil
BuildOptions DEPTutPky. C2400BuildOptian:
= CCELink DEPTatPky.C2400CCELink
CiCSHandlerame CICE_Ohj
ExporCCSHandle [&F True
CodeGeneration DSPTotPky. C2400CodeGenen
DSPBoard DEPTutPky.eZdspF2407DSFE

4-243

LF2407 eZdsp

CCSHandleName

Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and
MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle

Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this
is set to True, after you build your model, you will see the CCS
object in your MATLAB workspace browser with the name you
provided and class type ccsdsp.

CodeGeneration — Scheduler

£ DSPTGTPKG Target Preferences Setu ;|g|5|

[+ BuildQptions DSPTatPky.C2400BuildOp

[+ CCSLink DEPTotPky.C2400CC5LIn

- CodeGeneration DSPToutPky.C2400CodeGE

Scheduler DSPTgtPky.C24005chedu

Algarithm ﬂPreemptive_prinriw_hased
Tirner | Eva_timerz
TimerClockPrescaler :|1

+— DSPBoard DEPTutPky.eZdspF 24070

Algorithm

4-244

Algorithm to use for scheduling. The algorithm options are

LF2407 eZdsp

® Preemptive priority based — This scheduler runs based
on the timer interrupt. The timer period is set based on
the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest
group (the base rate task) runs first and other tasks run in
the order determined by their sample rates from faster tasks
to slower tasks. For more information, see the Models with
Multiple Sample Rates section of the Real Time Workshop
documentation.

® Free_running — This scheduler does not use any interrupts.
Tasks run in priority-based order and the execution of each
task depends only on how fast the task can run on the given
processor. This algorithm does not support preemption or
multitasking. (Selecting MultiTasking as the Tasking mode
in Configuration Parameters-Solver is not allowed for
this scheduling.) Overruns do not occur with this type of
scheduling, so any value in BuildOptions - RuntimeOptions
— OverrunAction is ignored.

Timer
Event manager (EV) timer to use for scheduling.

TimerClockPrescaler
Clock divider factor by which to prescale the selected timer
to produce the desired model rate. The system clock for the
TMS320LF2407 DSP is 40 MHz.

4-245

LF2407 eZdsp

4-246

DSPBoard

DSPTGTPKG Target Preferences Setup 10| =]

BuildOptions
CCSLink
CodeGeneration
DSPBoard
DSPEoardLabel
DEPChip
= CAMN
— BitRatePrescaler
— SAM
— SBG
— S
— SelfTestMode
— TEEG1
- TSEGZ
— DEPChipLabel
=Sl
— BaudRate
— CharacterLengthBits
— EnableLoopBack
— EnabileParity
— NumhberOfStopBits
— Parityhdade
— Suspensionhode
— UARTInterface
= 5FI
— BaudRateF actor
— ClockPhase
— ClockPolarity
— DataBits
— Mode
L Buspensiondode

DSPTgtPky. C2400BuildOption:
DEPTatPky.C2400CCELink
DSPTotPkn.C2400CodeGener:
DSPTutPky.eZdspF24070SFPE
F2407 PP Emulatar
DSPTatPky.C2407DSFPChip
DEPTatPky. CAN
10

ﬂSample_one_time

:IOnI\,r_faIIing_edges

|z

ﬂFaIse

~|sa

>|6

;lTI TMS320C2407
DEPTotPky. S5CI

»|a800

|z

ﬂFaIse

lIFalse

=1

:lE\ten

| sot_abort

:ITDIFrDm_hDST_leCk
DSPTotFky.C24005FI
127

:lND_delay

jRising_edge

~|18

ﬂMaster

:IFree_run

LF2407 eZdsp

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match exactly the label (name) of
the board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

CAN
Parameters that affect the control area network (CAN) module.
Most of these parameters affect the CAN bit timing.

CAN Bit Timing

The CAN protocol divides the nominal bit time into four
segments, which are reflected in the settable parameters below.
The four segments are

- SYNCSEG — Time used to synchronize the nodes on the bus.
It is always one time quantum (TQ), which is defined as

TQ - BaudRatePrescaler
SYSCLEK

where SYSCLK is the CAN module system clock frequency, and
the BaudRatePrescaler is defined below.

- PROP_SEG — Time used to compensate for the physical
delays in the network

- PHASE_SEG1 — Phase used to compensate for positive edge
phase error

- PHASE_SEG2 — Phase used to compensate for negative
edge phase error

The CAN bit timing is shown in the following illustration.

4-247

LF2407 eZdsp

4-248

. Nominal it time >
SPNCSES —s— e—sim—!
» ISE61 R L

T 1

Transmit Sample
paini poinl

Calculating Baud Rate

The length of a bit in the CAN module is

determined by TSEG1, TSEG2, and BaudRatePrescaler
parameters. The baud rate is

SYSCLK

BaudRate = BarndRatePresealer = BitTime

where
BitTime = TSEG1+TSEG2+1
The following table shows the corresponding baud rates (for a

40-Mhz clock as on the F2407 DSP) for the indicated parameter
settings.

LF2407 eZdsp

BaudRate
TSEG1 | TSEG2 | Prescaler | SJW | SBG | Baud Rate
4 3 10 2 0 0.5 Mbit/s
5 4 4 2 0 1 Mbit/s
6 3 2 2 0 2 Mbit/s

For additional details, refer to the TMS320LF/LC240xA DSP
Controllers Reference Guide - Systems and Peripherals, Literature
Number SPRU357B, on the Texas Instruments Web site.

The settable CAN parameters are:

BaudRatePrescaler
Value by which to scale the baud rate. Valid values are
from 1 to 256. As noted in the equation above, this value
determines the value of TQ.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample three times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

SBG
Sets the message resynchronization triggering.
Options are Only falling edges and
Both_falling and_rising edges.

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

4-249

LF2407 eZdsp

SelfTestMode
If True, sets the CAN module to loopback mode, where
a “dummy” acknowledge message is sent back without
needing an acknowledge bit.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
BRP, determines the length of a bit on the CAN bus. TSEG1
must be greater than TSEG2 and the Information Processing
Time (IPT). The IPT is the time needed to process one bit
and corresponds to two TQ units. TSEG1 = PROP_SEG +
PHASE_SEG1. See above for definitions of PROP_SEG and
PHASE_SEG1. Valid values for TSEG1 are from 1 through
16.

TSEG2
Sets the value of time segment 2 (PHASE_SEG2), which,
with TSEG1 and BRP, determines the length of a bit on
the CAN bus. See above for definitions of PHASE_SEG2.
TSEG2 must be less than or equal to TSEG1 and greater
than or equal to IPT. Valid values for TSEG2 are from 1
through 8.

DSP Chip Label
DSP chip model. Select the DSP chip installed on your target.
The chip model is fixed for the LF2407 eZdsp. If you change the
chip model, an error will be generated in code generation.

SCI
Parameters that affect the serial communications interfaces (SCI)
on the target.

The settable parameters are:

BaudRate
Baud rate for transmitting and receiving data.

4-250

LF2407 eZdsp

CharacterLengthBits
Length in bits from 1 to 8 of each transmitted/received
character.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this is enabled, a C24x
DSP’s Tx pin is internally connected to its Rx pin and it can
transmit data from its output port to its input port to check
the integrity of the transmission.

EnableParity
Select True to enable parity checking on the transmit/receive
data.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Available selections are 0dd parity
or Even parity. Enable Parity must be set to True to use
the selected ParityMode.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard abort, Soft abort, and Free run. Hard
abort stops the program immediately. Soft abort stops
when the current receive/transmit sequence is complete.
Free run continues running regardless of the breakpoint.

UARTInterface
Protocol to use when sending or receiving UART mode
data. Although available protocols are Raw_data and
To/From_host_block, only Raw_data is supported.
Raw_data sends or receives all data in its raw format, one
byte at a time.

4-251

LF2407 eZdsp

To/From_host_block is not supported currently and

is provided only for use in demos. It uses the serial
communication interface to communicate with host-side SCI
blocks. It attempts to read and interpret a specified number
of elements via a for loop using internal protocol.

SPI
Parameters that affect the serial peripheral interfaces (SPI) on
the target.

The settable parameters are:

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Whether the data is output immediately (No_delay) or
delayed by a half clock cycle (Delay half cycle) with
respect to the rising edge.

ClockPolarity
Whether the data is output at the Rising edge or
Falling edge of the system clock.

DataBits
Length in bits from 1 to 16 of each transmitted/received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 2%1. If you send data
greater than this value, the buffer overflows.

Mode
Whether to run the SPI module in Master or Slave mode.
Master mode initiates the transmission. Slave mode is
triggered by another master SPI and is synchronized to the

4-252

LF2407 eZdsp

clock used by the master SPI. Note that this option cannot
be changed at run-time.

SuspensionMode
Suspension to use when debugging your program with
Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard abort, Soft abort, and Free run. Hard
abort stops the program immediately. Soft abort stops
when the current receive/transmit sequence is complete.
Free run continues running regardless of the breakpoint.

See Also C24x ADC, C24x CAN Receive, C24x CAN Transmit, C24x PWM

4-253

Magnitude IQN

Purpose
Library

Description

IQmath

A
Y
B

IQMmag
Magnitude IQMN

Dialog
Box

See Also

4-254

Magnitude of two orthogonal IQ numbers
tiigmathlib in Embedded Target for TI C2000 DSP

This block calculates the magnitude of two I1Q numbers using
ag + 52

The output is an IQ number in the same Q format as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: Magnitude IQN |
td agnitude QM [mazk] [link]

Thiz block computes the magnitude of bwo 10 numberz. All inputs and
outputs are signed 32-bit fiwed-point numbers in the zame G format, The
rezpective [QMmag function is selected based on the [value.

QK. I Cancel | Help | Apply |

Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQNZ2,
IQN1 x IQN2, Saturate IQN, Square Root IQN, Trig Fecn IQN

Park Transformation

Purpose
Library

Description

Va DMc

Vdp
Vb

theta Pak V9

Park
Transformation

Convert two-phase stationary system vectors to rotating system vectors
c28xdmclib in Embedded Target for TI C2000 DSP

This block converts vectors in balanced two-phase orthogonal
stationary systems into an orthogonal rotating reference frame. The
transformation implements these equations

Vd = Vacos8 + Vhsing

Vg = -Vasind+ Vbcoss

and is illustrated in the following figure.

“Whecos B

Whesing

e

The inputs to this block are the direct axis (Va) and the quadrature axis
(Vb) components of the transformed signal and the phase angle (theta)
between the stationary and rotating frames.

The outputs are the direct axis (Vd) and quadrature axis (Vq)
components of the transformed signal in the rotating frame.

The instantaneous inputs are defined by the following equations.

“id = I sin(wt)

4-255

Park Transformation

ig=1sin(wt +n/2)”

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

o
Dia |og [Z1Block Parameters: Park Transformation 2=

Box Fark Transformation [mask)

Thiz block performs vectar transformation from balanced two-phase orthogonal
stationan system into orthogonal rotating frame, All inputs and outputs are signed 22-bit
fired-paint numbers with G value between 1 and 29,

Cancel | Help | Spply |

References Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRCO080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, PID Controller,
Space Vector Generator, Speed Measurement

4-256

PID Controller

Purpose Digital PID controller
Library c28xdmclib in Embedded Target for TI C2000 DSP
Description This block implements a 32-bit digital PID controller with antiwindup
e correction. The inputs are a reference input (ref) and a feedback input
ref @ t (fdb) and the output (out) is the saturated PID output. The following
b eutr diagram shows a PID controller with antiwindup.
PID
FID Controller
Ref [+ |
H:P — s |dt -
+ I
Fdb d
E e
1

The differential equation describing the PID controller before saturation
that is implemented in this block is

“u (t) = up(t) +ut) +u)

presat

where ., is the PID output before saturation, u, is the proportional

term, u; is the integral term with saturation correction, and u, is the
derivative term.

The proportional term is
“u,(t) = K e(t)”

where K is the proportional gain of the PID controller and e(?) is the
error between the reference and feedback inputs.

4-257

PID Controller

4-258

The integral term with saturation correction is

K
;(t) = T-?ﬁ]eigjdg +Kri:£ifj—:apresﬁrifjj
I

where K| is the integral correction gain of the PID controller.

The derivative term is

delt)
dt

uylt) = KpTd

where T, is the derivative time of the PID controller. In discrete terms,
the derivative gain is defined as K, = T,/ T, and the integral gain is
defined as K; = T/T,, where T is the sampling period and T is the
integral time of the PID controller.

The above differential equations are transformed into a difference
equations by backward approximation.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

PID Controller

Dialog
Box

[Z1Block Parameters: PID Controller d |

—PID Cantroller [mazk]

Thiz block implements a digital PID contraller with anti-windup correction. Bath inputs
and the output are zigned 32-bit fixed-point numberz with @ value between 1 and 23,

—Parameters
Propartional gain:
Jo
Integral gain:
i
Integral comection gain:
Jo
Drerivative gair:
i
kimirurn aLtput:
Jo
b amimurm output;
i

LCancel | Help | Apply |

Proportional gain
Amount of proportional gain (K p) to apply to the PID

Integral gain
Amount of gain (K,) to apply to the integration equation

Integral correction gain
Amount of correction gain (K) to apply to the integration equation

Derivative gain
Amount of gain (K,) to apply to the derivative equation.

Minimum output
Minimum allowable value of the PID output

4-259

PID Controller

References

See Also

4-260

Maximum output
Maximum allowable value of the PID output

Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRCO080, available at the
Texas Instruments Web site.

Clarke Transformation, Inverse Park Transformation, Park
Transformation, Space Vector Generator, Speed Measurement

Ramp Control

Purpose
Library

Description

DM et

tamget

Rampcntl 189P

Ramp
Control

Dialog
Box

Create a ramp-up and ramp-down function
c28xdmclib in Embedded Target for TI C2000 DSP

This block implements a ramp-up and ramp-down function. The input
is a target value and the outputs are the set point value (setpt) and

a flag. The flag output is set to 7FFFFFFFh when the output setpt
value reaches the input target value. The target and setpt values
are signed 32-bit fixed-point numbers with Q values between 16 and 29.
The flag is a long number.

The target value is compared with the setpt value. If they are not
equal, the output setpt is adjusted up or down by a fixed step size
(0.0000305).

If the fixed step size is relatively large compared to the target value,
the output may oscillate around the target value.

] Function Block Parameters: Ramp Control |

—FRamp Cantral [mazk] [link)

Thiz block implements a ramp up and ramp dovan function. The output zetpt value wil
ramp up or doven starting fram zero until it equals the input target value. The output flag
iz zet to YFFFFFFFh when the setpt value equals the target value. Both target and
output value are signed 32-bit fixed-paint numbers with O value between 16 and 29,
while the flag is a long number.

—Parameters
rd awiniunn delay rate:
ki linnit:
jo

Fd axirnurn firmit:

n

ok I Cancel Help Apply

4-261

Ramp Control

Maximum delay rate
Value that is multiplied by the sampling loop time period to
determine the time delay for each ramp step. Valid values are
integers greater than 0.

Minimum limit
Minimum allowable ramp value. If the input falls below this
value, it will be saturated to this minimum. The smallest value
you can enter is the minimum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value below this minimum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its minimum value is -4.

Maximum limit
Maximum allowable ramp value. If the input goes above this
value, it will be reduced to this maximum. The largest value
you can enter is the maximum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value above this maximum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its maximum value is 3.9999....

See Also Ramp Generator

4-262

Ramp Generator

Purpose
Library

Description
DMc

gain
offset% out

freq RampGen

Ramp
Generator

Algorithm

Generate ramp output
c28xdmclib in Embedded Target for TI C2000 DSP

This block generates ramp output (out) from the slope of the ramp
signal (gain), DC offset in the ramp signal (offset), and frequency of
the ramp signal (freq) inputs. All of the inputs and output are 32-bit
fixed-point numbers with Q values between 1 and 29.

The block’s output (out) at the sampling instant % is governed by the
following algorithm:

“out(k) = angle(k) * gain(k) + offset(k) ”

For out(k) > 1, out(k) = out(k) - 1. For out(k) < -1, out(k) = out(k) + 1.
Angle(k) is defined as follows:

“angle(k) = angle(k-1) + freq(k) * Maximum step angle

for angle(k) > 1, angle(k) = angle(k) - 1

for angle(k) < -1, angle(k) = angle(k) + 1”

The frequency of the ramp output is controlled by a precision frequency
generation algorithm that relies on the modulo nature of the finite
length variables. The frequency of the output ramp signal is equal to

m »

“f = (Maximum step angle * sampling rate) / 2

where m represents the fractional length of the data type of the inputs.

All math operations are carried out in fixed-point arithmetic, where the
fixed-point fractional length is determined by the block’s inputs.

4-263

Ramp Generator

Dialog
Box

Examples

4-264

E! Function Block Parameters: Ramp Generator x|

—PRamp Generator [mask] [link]

Thiz block generates ramp output of adiustable gain, frequency and do offset. All
inputz and the output are gigned 32-bit fiwed-point numbers with 3 value between 1
and 29, Maximum step angle controls the rate of the output change.

—Parameters

b axirurn step angle:

E

0k I Cancel | Help | Apply |

Maximum step angle
The maximum step size, which determines the rate of change of
the output (i.e., the minimum period of the ramp signal).

The following model demonstrates the Ramp Generator block. The
Constant and Scope blocks are available in Simulink Commonly Used
Blocks.

, |efixtE End
Constant P e
o |etixre Ene > Dﬁgﬂ@ oy | 2 E_End > 1
Constant | feq RampGen Soope
R=mp
0001 siixtE_End iFenemior
Constant?

In your model, select Simulation > Configuration Parameters. On
the Solver pane, set Type to Fixed-step and Solver to discrete
(no continuous states). Set the parameter values for the blocks

as shown in the following table.

Ramp Generator

Block Connects to Parameter Value

Constant Ramp Generator - gain | Constant value 1
Sample time 0.001
Output data type sfix (32)
Output scalig value 2”-9

Constant Ramp Generator - Constant value 0

offset Sample time inf

Output data type sfix (32)
Output scalig value 2”-9

Constant Ramp Generator - freq | Constant value 0.001
Sample time inf
Output data type sfix (32)
Output scalig value 2”-9

Ramp Scope (Simulink block) Maximum step angle 1

Generator

When you run the model, the Scope block generates the following output
(drag a zoom box around a portion of the output to change the display).

4-265

Ramp Generator

EEIEEEEEE

The expected frequency of the output is
“f = (maximum step angle * sampling rate) / 2™

f=(1%1000) /2”9 =1.9531 Hz”

The expected period is then

“T'=1f=0.5120s"”

which is what the above Scope output shows.

See Also Ramp Control

4-266

Saturate IQN

Purpose
Library

Description

[Qmath

b 1) @ Yp

1Csat
Saturate QN

Dialog
Box

Saturate an IQ number
tiigmathlib in Embedded Target for TI C2000 DSP
This block saturates an input IQ number to the specified positive and

negative limits. The returned value is an IQ number of the same Q
value as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Block Parameters: Saturate IQN |

— Saturate 10N [magsk) [link)

Thiz block saturates the walue of an 18 number to the given pogitive and
negative limits. Both the input and the output are zigned 32-bit fised-paoint
numbers. The respective 10 zat function is selected bazed on the O value,

— Parameters
Pozitive limit:

F

Megative limit;
o

QK. I Cancel | Help | Apply |

Positive Limit
Maximum positive value to which to saturate

Negative Limit
Minimum negative value to which to saturate

4-267

Saturate IQN

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQNZ2,
IQN1 x IQN2, Magnitude IQN, Square Root IQN, Trig Fecn IQN

4-268

Space Vector Generator

Purpose
Library

Description

Ua JDMC Ta

Th

YP gygenpa Te

Space Wector
Genarator

Duty ratios for stator reference voltage
c28xdmclib in Embedded Target for TI C2000 DSP

This block calculates appropriate duty ratios needed to generate a
given stator reference voltage using space vector PWM technique.
Space vector pulse width modulation is a switching sequence of the
upper three power devices of a three-phase voltage source inverter
and is used in applications such as AC induction and permanent
magnet synchronous motor drives. The switching scheme results in
three pseudo-sinusoidal currents in the stator phases. This technique
approximates a given stator reference voltage vector by combining the
switching pattern corresponding to the basic space vectors.

The inputs to this block are

® Alpha component — the reference stator voltage vector on the direct
axis stationary reference frame (Ua)

® Beta component — the reference stator voltage vector on the direct
axis quadrature reference frame (Ub)

The alpha and beta components are transformed via the inverse Clarke
equation and projected into reference phase voltages. These voltages
are represented in the outputs as the duty ratios of the PWMI1 (Ta),
PWMS3 (Tb), and PWMS5 (Tc).

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

4-269

Space Vector Generator

(]
Dialog 2

Box Space Wectar Generatar [mazk)]

Thiz block calculates appropriate duty cycle ratios needed to generate given stator
reference voltage using space vector Pwh technique. Al inputs and outputs are
zighed 32-hit fised-paint numbers with O value between 1 and 29.

LCancel | Help | Apply |

References Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRCO080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, PID Controller, Speed Measurement

4-270

Speed Measurement

Purpose
Library

Description
theta ‘. DG
dir Speed

Speed Measurement

freq
RPM

Dialog
Box

Motor speed
c28xdmclib in Embedded Target for TI C2000 DSP

This block calculates the motor speed based on the rotor position when
the direction information is available. The inputs are the electrical
angle (theta) and the direction of rotation (dir) from the QEP encoder.
The outputs are the speed in per-unit frequency (freq) and the speed
in revolutions per minute (rpm).

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

[Z1Block Parameters: Speed Measurement 21x|

—Speed kMeasurement [mazk]

Thiz block calculates the motor speed bazed on a rotor pozition measurement. The
rotor pogition input and the freguency are signed 32-bit fived-point numbers with 0
value between 1 and 29, while the rator direction and speed are long numbers.

—Parameters
Baze speed [rpm]:
Jo
Differentiator constant:
i
Low-pazz filker constant:
Jo

LCancel Help Apply

4-271

Speed Measurement

References

See Also

4-272

Base speed
Nominal speed of the machine in rpm.

Differentiator constant
Constant used in the differentiator equation that describes the
rotor position.

Low-pass filter constant
Constant to apply to the low-pass filter. This constant is
1/(1+T*(2rf,)), where T is the sampling period and f, is the cutoff
frequency. The 1/(2rf) term is the low-pass filter time constant.
A low-pass filter is used in this block to reduce amplifying noise
generated by the differentiator.

Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRCO080, available at the
Texas Instruments Web site.

Clarke Transformation, Inverse Park Transformation, Park
Transformation, PID Controller, Space Vector Generator

Square Root IQN

Purpose
Library

Description

[Qmath

A Yp

IQNsgrt
Square Roct IQN

Dialog
Box

Square root or inverse square root of IQ number
tiigmathlib in Embedded Target for TI C2000 DSP
This block calculates the square root or inverse square root of an 1Q

number and returns an IQ number of the same Q format. The block
uses table lookup and a Newton-Raphson approximation.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

Note Negative inputs to this block return a value of zero.

Block Parameters: Square Rook I0N £

— Square Boot IOM [maszk] (link]

Thiz block computes the square root and the inverse square root of an 10
riumber uzing table lookup and Mevston-B aphzon approximation, Both the
input and the output are signed 32-bit fixed-paint numbers. The respective
|@M=grt function iz selected bazed on the O value.

— Parameters

Function | R e

QK I Cancel Help Appl

Function
Whether to calculate the square root or inverse square root

® Square root (_sqrt) — Compute the square root.

4-273

Square Root IQN

® Inverse square root (_isqrt) — Compute the inverse
square root.

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQNZ2,
IQN1 x IQN2, Magnitude IQN, Saturate IQN, Trig Fen IQN

4-274

To Memory

Purpose

Library

Description

To enony

Wirte To Wermony

Dialog
Box

Write data to target memory

€2400spchiplib or c280xspchiplib or c281xspchiplib in Embedded

Target for TI C2000 DSP

This block sends data of the specified data type to a particular memory

address on the target.

Note Although the block dialog box shown here is for the C24x, the
same block and dialog box apply to the C280x and the C281x.

Parameters pane

! E! Block Parameters: C28x To Memory

To Memony [mazk] [link]

Wik to zequential locations of the target memorm starting at specified startt address.
kemary may be written inta during initialization, termination and at every sanmple time.
ou can specify custom C source code bo be inserted before and/or after the memony
ke instruction(z].

P fS IEustom Code I

temory address (hex]:

|2000000F

™ wiite at initialization
™ wiite at termination
[“wirite at every sample time

Data type: | Lint32 LI

Apply

LCancel | Help |

o |

Memory address

Address of the target memory location, in hexadecimal, to which

to write data

4-275

To Memory

Data type
Type of data to be written to the above memory address. Valid
data types are double, single, int8, uint8, int16, uint16,
int32, and uint32. The data is cast from the selected data type
to 16-bit data.

Write at initialization
Whether to write the specified Value at program start

Value
First value of data to be written to memory at program start

Write at termination
Whether to write the specified Value at program end

Value
Last value of data to be written to memory at program termination

Write at every sample time
Whether to write data in real time during program execution

Note If your To Memory block is set to write to memory at every
sample time interval (that is, it has an incoming port) and it
receives a vector signal input of N elements, a corresponding
memory region starting with the specified Memory address is
updated at every sample time. If you specify an Initial and/or
Termination value, that value is written to all locations in the
same memory region at initialization and/or termination.

If your To Memory block does not write to memory at every sample
time (that is, it does not have an incoming port) and you specify
an Initial and/or Termination value, that value is written to a
single memory location that corresponds to the specified Memory
address.

4-276

To Memory
|

Custom Code pane

| = Block Parameters: C28% To Memory
To Memony [mazk] (link)

Wwirite to sequential locations of the target memaory starting at specified start address.
temony may be written into during initialization, termination and at every sample time.

You can specify custom C source code to be inzerted befare and/ar after the memory
write instruction]z).

Parameters | Cusztomn Code

[v Insert custom code before memary wiite
Cuztom code:

[v Insert custom code after memory wiite

Cugtom code:

(1] I LCancel | Help |

apply |

Insert custom code before memory write

C-code to execute before writing to the specified memory address.
An example of code that may be inserted here is

asm (" EALLOW ")

which enables write access to the device emulation registers on
the C2812 DSP.

Insert custom code after memory write

C-code to execute after writing to the specified memory address.
An example of code that may be inserted here is

asm (" DIS ")

which disables write access to the device emulation registers on
the C2812 DSP.

See Also

From Memory

4-277

To RTDX

Purpose
Library

Description

To RTOHE
ochani

To RTLCH

4-278

Add RTDX output channel
rtdxBlocks in Embedded Target for TI C2000 DSP

When you generate code from Simulink in Real-Time Workshop with a
To RTDX block in your model, code generation inserts the C commands
to create an RTDX output channel on the target. Output channels
transfer data from the target to the host.

The generated code contains this command:

RTDX_enableOutput (&channelname)

where channelname is the name you enter in the channelName field
in the To RTDX dialog box.

Note To RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
any operations.

To use RTDX blocks in your model, you must do the following:
1 Add one or more To RTDX or From RTDX blocks to your model.
2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

4 Use the readmsg and writemsg functions in MATLAB to send and
retrieve data from the target over RTDX.

To RTDX
|

Dialog =1 sink Block Parameters: To RTDX x|

Box —To RTDM [mask) (irk]
|Jze zpecified RTDM channel to zend data to host from target DSP.

—Parameters

channelMame

InutT aps

oK I LCancel Help Spply

Channel name
Name of the output channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Enables blocking mode (selected by default). In blocking mode,
writing a message is suspended while the RTDX channel is busy,
that is, when data is being written in either direction. The code
waits at the RTDX_write call site while the channel is busy. Note
that any interrupt of the higher priority will temporary divert the
program execution from this site, but it will eventually come back
and wait until the channel stops writing.

When blocking mode is not enabled (when the check box is
cleared), writing a message is abandoned if the RTDX channel is
busy, and the code proceeds with the current iteration.

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function in the Link for Code Composer Studio Development Tools
to prepare your RTDX channels. This option applies only to the

4-279

To RTDX

channel you specify in Channel name. You do have to open the
channel.

See Also From RTDX

4-280

Trig Fen IQN

Purpose
Library

Description
|Qmath

m@ ¥

1QMtrig
Trig Fen IQN

W

Dialog
Box

Sine, cosine, or arc tangent of IQ number
tiigmathlib in Embedded Target for TI C2000 DSP
This block calculates basic trigonometric functions and returns the

result as an IQ number. Valid Q values for IQsinPU and IQcosPU are
1 to 30. For all others, valid Q values are from 1 to 29.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 2-2 for more information.

|
= Trig Fen [N [mask] [link)

This block computes zelected tigonometric functions of an G number,
Both the input and the output are signed 32-bit fised-point numbers, The
rezpective tigonameatric function is selected based on the [value.

— Parameters
Function

Function
Type of trigonometric function to calculate:

® TIQsin — Compute the sine (sin(A)), where A is in radians.

® IQsinPU — Compute the sine per unit (sin(2*pi*A)), where
A is in per-unit radians.

® TQcos — Compute the cosine (cos(A)), where A is in radians.

® TQcosPU — Compute the cosine per unit (cos(2*pi*A)),
where A is in per-unit radians.

4-281

Trig Fcn IQN

e TQatan — Compute the arc tangent (tan(A)), where A is in
radians.

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQNZ2,
IQN1 x IQN2, Magnitude IQN, Saturate IQN, Square Root IQN

4-282

A

Absolute IQN block 4-2
ADC blocks
C24x 4-5
C281x 4-100
analog-to-digital converter, see ADC blocks
applications
TI C2000 1-2
Arctangent IQN block 4-3
asymmetric vs. symmetric waveforms 4-133
asynchronous interrupt processing 1-13

Baud rate 4-248

blocking mode
C24x 4-16

blocks
adding to model 1-28
recommendations 1-16

build options 4-158 4-171 4-189 4-202

C

¢2000lib startup 1-20

C24x ADC block 4-5

C24x CAN Receive block 4-10

C24x CAN Transmit block 4-14 4-18
C24x CAP block 3-5 4-18

C24x GPIO Digital Input block 4-24
C24x GPIO Digital Output block 4-27
C24x PWM block 4-30

C24x QEP block 4-40

C24x SCI Receive block 4-43

C24x SCI Transmit block 4-45

C24x SPI Receive block 4-47

C24x SPI Transmit block 4-49
C280x ADC block 4-50

C280x eCAN Receive block 4-55
C280x eCAN Transmit block 4-59

C280x ePWM block 4-63
C280x eQEP block 4-80
C280x Hardware Interrupt block 4-94
C281x ADC block 4-100
C281x CAP block 4-105
C281x eCAN Receive block 4-111
C281x eCAN Transmit block 4-115
C281x GPIO Digital Input block 4-119
C281x GPIO Digital Output block 4-122
C281x PWM block 4-131
C281x QEP block 4-141
C281x SCI Receive block 4-144
C281x SCI Transmit block 4-147
C281x SPI Receive block 4-149
C281x SPI Transmit block 4-151
C281x Timer block 4-152
CAN bit timing 4-247
CAN/eCAN
C24x Receive block 4-10
C24x Transmit block 4-14 4-18
C280x Transmit block 4-59
C280xReceive block 4-55
C281x Transmit block 4-115
C281xReceive block 4-111
timing 4-183 4-213
capture block

C24x 3-5 4-18
C281x 4-105
CCS 1-9

link options 4-162 4-175 4-193 4-206
See also Code Composer Studio
Clarke Transformation block 4-155
clock speed 1-11
Code Composer Studio 1-9
projects 1-32
code generation
options 4-163 4-176 4-194 4-207
overview 1-31
code optimization 2-9
compiler options 4-158 4-171 4-189 4-202

Index-1

Index

configuration default 1-9 ePWM blocks
control area network, see CAN/eCAN C280x 4-63
control logic 4-36 event manager timer 4-32
conversion

float to IQ number 4-217 F

IQ number to different IQ number 4-237

IQ number to float 4-233 F2808 eZdsp block 4-188
CPU clock speed 1-11 F2812 eZdsp block 4-201
Custom C280x Board block 4-157 fixed-point numbers 2-4
Custom C281x Board block 4-170 flash memory 1-5

Float to IQN block 4-217
floating-point numbers

D convert to IQ number 4-217
data type support 1-10 four-quadrant arctangent 4-3
data types Fractional part IQN block 4-218
conversion 2-9 Fractional part IQN x int32 block 4-219
deadband From Memory block 4-220
C281x PWM 4-138 From RTDX block 4-222
C28x PWM 4-36
default build configuration 1-9 G
digital motor control, see DMC library
Division IQN block 4-187 4-263 GPIO input
DMC library C24x 4-24
Clarke Transformation 4-155 C281x 4-119
Inverse Park Transformation 4-231 GPIO output
Park Transformation 4-255 C24x 4-27
PID controller 4-257 C281x 4-122
ramp control 4-261
ramp generator 4-263 H

Space Vector Generator 4-269

Speed Measurement 4-271 hardware 1-3

high-speed peripheral clock 1-12

DSP board
target preferences options 4-165 4-178
4-196 4-209 |
duty ratios 4-269 /O
C24x input 4-24
E C24x output 4-27

C281x input 4-119
C281x output 4-122
Idle Task block 4-226

enhanced quadrature encoder pulse module
C280x 4-80

Index-2

Index

Integer part IQN block 4-229
Integer part IQN x int32 block 4-230
Inverse Park Transformation block 4-231
IQ Math library 2-2
Absolute IQN block 4-2
Arctangent IQN block 4-3
building models 2-9
code optimization 2-9
common characteristics 2-2
Division IQN block 4-187
Float to IQN block 4-217
Fractional part IQN block 4-218
Fractional part IQN x int32 block 4-219
Integer part IQN block 4-229
Integer part IQN x int32 block 4-230
IQN to Float block 4-233
IQN x int32 block 4-234
IQN x IQN block 4-235
IQN1 to IQN2 block 4-237
IQN1 x IQN2 block 4-238
Magnitude IQN block 4-254
Q format notation 2-5
Saturate IQN block 4-267
Square Root IQN block 4-273
Trig Fen IQN block 4-281
IQ numbers
convert from float 4-217
convert to different 1Q 4-237
convert to float 4-233
fractional part 4-218
integer part 4-229
magnitude 4-254
multiply 4-235
multiply by int32 4-234
multiply by int32 fractional result 4-219
multiply by int32 integer part 4-230
square root 4-273
trigonometric functions 4-281
IQN to Float block 4-233
IQN x int32 block 4-234

IQN x IQN block 4-235
IQN1 to IQN2 block 4-237
IQN1 x IQN2 block 4-238

L

LF2407 eZdsp block 4-239
linker options 4-159 4-172 4-190 4-203

M

Magnitude IQN block 4-254
mailbox 4-11
math blocks, see IQ Math library
MathWorks software 1-5
memory management 1-17
messages
F2808 eZdsp 4-56
F2812 eZdsp 4-112
LF2401 eZdsp 4-11
model
add blocks 1-28
building overview 1-18
creation overview 1-15
IQmath library 2-9
multiplication
IQN x int32 4-234
IQN x int32 fractional part 4-219
IQN x int32 integer part 4-230
IQN x IQN 4-235
IQN1 x IQN2 4-238

o

operating system requirements 1-3
optimization code 2-9

P

Park Transformation block 4-255
phase conversion 4-155

Index-3

Index

PID controller 4-257
prescaler 4-37
projects
CCS 1-32
pulse wave modulators, see PWM blocks
PWM blocks
C24x 4-30
C281x 4-131
control logic 4-36
deadband 4-36

Q

Q format 2-5

quadrature encoder pulse circuit
C24x 4-40
C28x 4-141

ramp control block 4-261
ramp generator block 4-263
Real Time Workshop build options
Custom C280x Board 4-160
F2808 eZdsp 4-192
F2812 eZdsp 4-242
LF2407 eZdsp 4-173 4-205
receive 4-10
reference frame conversion
inverse Park transformation 4-231
Park transformation 4-255
reset 1-19
RTDX
from 4-222
to 4-278
runtime options 4-160 4-173 4-192 4-205

S

sample time
F2812 eZdsp 4-57 4-113

Index-4

LF2407 eZdsp 4-12

maximum 1-12
Saturate IQN block 4-267
scheduling 1-11
serial communications interface

C24x receive 4-43

C24x transmit 4-45

C281x receive 4-144

C281x transmit 4-147
serial peripheral interface

C24x receive 4-47

C24x transmit 4-49

C281x receive 4-149

C281x transmit 4-151
setting up hardware 1-3
signed fixed-point numbers 2-4
simulation parameters

automatic 1-23

setting 1-17
software requirements 1-5
Space Vector Generator block 4-269
Speed Measurement block 4-271
Square Root IQN block 4-273
startup c2000lib 1-20

T

target configuration
example 3-2 4-201
F2808 eZdsp 3-2 4-188
LF2407 eZdsp 4-239
target model creation 1-15
target preferences

compiler options 4-158 4-171 4-189 4-202

DSP board options 4-165 4-178 4-196
4-209
linker options 4-159 4-172 4-190 4-203
Target Preferences blocks
Custom C280x Board 4-157
Custom C281x Board 4-170

Index

F2808 eZdsp 4-188
F2812 eZdsp 4-201
LF2407 eZdsp 4-239

TI software 1-6

timing
CAN/eCAN 4-183 4-213
interrupts 1-11

To Memory block 4-275

To RTDX block 4-278
transmit 4-14
Trig Fen IQN block 4-281

w

waveforms 4-133

Index-5

	toc
	Getting Started
	What Is the Embedded Target for the TI TMS320C2000 DSP Platform?
	Suitable Applications

	Setting Up and Configuring
	Platform Requirements — Hardware and Operating System
	Supported Hardware for Targets
	Running Code from Flash Memory

	Software Requirements
	MathWorks Software
	Texas Instruments Software

	Verifying the Configuration

	Embedded Target for TI C2000 and Code Composer Studio
	Default Project Configuration
	Default Build Options in the custom_MW Configuration

	Data Type Support
	Scheduling and Timing
	Timer-Based Interrupt Processing
	High-Speed Peripheral Clock

	Asynchronous Interrupt Processing

	Overview of Creating Models for Targeting
	Online Help
	Blocks to Avoid Using in Your Models
	S-Function Builder Blocks
	Setting Simulation Configuration Parameters
	System Target Types and Memory Management

	Building Your Model
	F2812 eZdsp and F2808 eZdsp Reset Sequence
	LF2407 eZdsp Reset Sequence

	Using the c2000lib Blockset
	Hardware Setup
	Starting the c2000lib Library
	General
	Chip Support
	Optimized Libraries
	Other Blocks

	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model
	Creating Code Composer Studio Projects Without Loading

	Using the IQmath Library
	About the IQmath Library
	Common Characteristics

	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Q Format Notation
	Example — Q.15
	Example — Q1.30
	Example — Q-2.17
	Example — Q17.-2

	Building Models
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Blocks — By Category
	C2000 Target Preferences Library (c2000tgtpreflib)
	Host-side CAN Blocks (c2000canlib)
	C2000 RTDX Instrumentation Library (rtdxBlocks)
	C2400 DSP Chip Support Library (c2400dspchiplib)
	C280x DSP Chip Support Library (c280xdspchiplib)
	C281x DSP Chip Support Library (c281xdspchiplib)
	C28x Digital Motor Control Library (c28xdmclib)
	C28x IQmath Library (tiiqmathlib)

	Blocks — Alphabetical List
	Index

	tables
	Required TI Software for Targeting Your TI C2000 Hardware
	Maximum Sample Times
	Build Options
	CCSLink Options
	CodeGeneration Options
	DSPBoard Options
	IO MUX Output Control Register A
	IO MUX Output Control Register C
	IO MUX Output Control Register A
	IO MUX Output Control Register C
	C280x Peripheral Interrupt Vector Values
	GPIO A MUX
	GPIO B MUX
	GPIO A MUX
	GPIO B MUX
	C281x Peripheral Interrupt Vector Values

